Advertisements
Advertisements
प्रश्न
Find all the zeroes of `(2x^4 – 3x^3 – 5x2 + 9x – 3)`, it is being given that two of its zeroes are `sqrt3 and –sqrt3`.
उत्तर
The given polynomial is f(x) = `2x^4 – 3x^3 – 5x^2 + 9x – 3`
Since √3 and –√3 are the zeroes of f(x), it follows that each one of `(x – sqrt3) `and `(x + sqrt3)`is a factor of f(x).
Consequently, `(x – sqrt3) (x + sqrt3)` = (x2 – 3) is a factor of f(x).
On dividing f(x) by (x2 – 3), we get:
`f(x) = 0`
`⇒ 2x^4 – 3x^3 – 5x2 + 9x – 3 = 0`
`⇒ (x^2 – 3) (2x^2– 3x + 1) = 0`
`⇒ (x^2 – 3) (2x2– 2x – x + 1) = 0`
`⇒ (x – sqrt3) (x + sqrt3) (2x – 1) (x – 1) = 0`
`⇒ x = sqrt3 or x = -sqrt3 or x = 12 or x = 1`
Hence, all the zeroes are `sqrt3, -sqrt3`, 12 and 1.
APPEARS IN
संबंधित प्रश्न
The graphs of y = p(x) are given in following figure, for some polynomials p(x). Find the number of zeroes of p(x).
The graphs of y = p(x) are given in following figure, for some polynomials p(x). Find the number of zeroes of p(x).
If 3 is a zero of the polynomial `2x^2 + x + k`, find the value of k.
If -2 is a zero of the polynomial `3x^2 + 4x + 2k` then find the value of k.
If the sum of the zeros of the quadratic polynomial `kx^2-3x + 5` is 1 write the value of k..
Find the zeroes of the quadratic polynomial `f(x) = 6x^2 – 3.`
If the zeroes of the quadratic polynomial x2 + (a + 1) x + b are 2 and –3, then ______.
If one of the zeroes of the quadratic polynomial (k -1)x² + kx + 1 the value of k is ______.
The graph of y = f(x) is shown in the figure for some polynomial f(x).
The number of zeroes of f(x) is ______.
The zeroes of the quadratic polynomial 16x2 – 9 are ______.