हिंदी

Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola: 5y2 = 24x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

5y2 = 24x

योग

उत्तर

Given equation of the parabola is 5y2 = 24x.

∴ y2 = `24/5"x"`

Comparing this equation with y2 = 4ax, we get

4a = `24/5`

∴ a = `6/5`

Co-ordinates of focus are S(a, 0), i.e., S`(6/5, 0)`

Equation of the directrix is x + a = 0.

i.e., `"x" + 6/5` = 0, i.e., 5x + 6 = 0

Length of latus rectum = 4a = `4(6/5) = 24/5`

Co-ordinates of end points of latus rectum are (a, 2a) and (a, –2a), i.e., `(6/5, 12/5)` and `(6/5, (-12)/5)`.

shaalaa.com
Conic Sections - Parabola
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Conic Sections - Exercise 7.1 [पृष्ठ १४९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Conic Sections
Exercise 7.1 | Q 1. (i) | पृष्ठ १४९

संबंधित प्रश्न

Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

3x2 = 8y


Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

x2 = –8y


Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (3, 4)


For the parabola 3y2 = 16x, find the parameter of the point (3, – 4).


For the parabola 3y2 = 16x, find the parameter of the point (27, –12).


Find coordinates of the point on the parabola. Also, find focal distance.

y2 = 12x whose parameter is `1/3`


If a parabolic reflector is 20 cm in diameter and 5 cm deep, find its focus.


Find coordinate of focus, vertex and equation of directrix and the axis of the parabola y = x2 – 2x + 3


Find the equation of common tangent to the parabola y2 = 4x and x2 = 32y


The tower of a bridge, hung in the form of a parabola have their tops 30 meters above the roadway and are 200 meters apart. If the cable is 5 meters above the roadway at the centre of the bridge, find the length of the vertical supporting cable 30 meters from the centre.


A circle whose centre is (4, –1) passes through the focus of the parabola x2 + 16y = 0.

Show that the circle touches the directrix of the parabola.


Select the correct option from the given alternatives:

The length of latus rectum of the parabola x2 – 4x – 8y + 12 = 0 is _________


Select the correct option from the given alternatives:

If the focus of the parabola is (0, –3) its directrix is y = 3 then its equation is


Select the correct option from the given alternatives:

The endpoints of latus rectum of the parabola y2 = 24x are _______


Select the correct option from the given alternatives:

Equation of the parabola with vertex at the origin and directrix x + 8 = 0 is __________


Select the correct option from the given alternatives:

The area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the endpoints of its latus rectum is _________


Select the correct option from the given alternatives:

If the parabola y2 = 4ax passes through (3, 2) then the length of its latus rectum is ________


Answer the following:

For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:

2y2 = 17x


Answer the following:

Find the Cartesian coordinates of the point on the parabola y2 = 12x whose parameter is 2


Answer the following:

Find the co-ordinates of a point of the parabola y2 = 8x having focal distance 10


Answer the following:

Find the equation of the tangent to the parabola y2 = 9x at the point (4, −6) on it


Answer the following:

Find the equations of the tangents to the parabola y2 = 9x through the point (4, 10).


Answer the following:

Find the equation of the tangent to the parabola y2 = 8x which is parallel to the line 2x + 2y + 5 = 0. Find its point of contact


Answer the following:

The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that `("m"_1 /"m"_2)` = k, where k is a constant.


Answer the following:

Find the
(i) lengths of the principal axes
(ii) co-ordinates of the foci
(iii) equations of directrices
(iv) length of the latus rectum
(v) Distance between foci
(vi) distance between directrices of the curve

x2 − y2 = 16


The length of latus-rectum of the parabola x2 + 2y = 8x - 7 is ______.


The area of the triangle formed by the lines joining vertex of the parabola x2 = 12y to the extremities of its latus rectum is ______.


Let the tangent to the parabola S: y2 = 2x at the point P(2, 2) meet the x-axis at Q and normal at it meet the parabola S at the point R. Then, the area (in sq.units) of the triangle PQR is equal to ______.


If a line along a chord of the circle 4x2 + 4y2 + 120x + 675 = 0, passes through the point (–30, 0) and is tangent to the parabola y2 = 30x, then the length of this chord is ______.


The centre of the circle passing through the point (0, 1) and touching the parabola y = x2 at the point (2, 4) is ______.


The equation of the parabola whose vertex and focus are on the positive side of the x-axis at distances a and b respectively from the origin is ______.


A circle of radius 2 unit passes through the vertex and the focus of the parabola y2 = 2x and touches the parabola y = `(x - 1/4)^2 + α`, where α > 0. Then (4α – 8)2 is equal to ______.


Area of the equilateral triangle inscribed in the circle x2 + y2 – 7x + 9y + 5 = 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×