Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` for the following function
xy – tan(xy)
उत्तर
Given xy – tan(xy)
Differentiating both sides with respect to x, we get
`"d"/"dx" = (xy) = "d"/"dx" tan (xy)`
`x "d"/"dx" (y) + y "d"/"dx" (x) = sec^2 (xy) "d"/"dx" (xy)`
`"x" "dy"/"dx" + y(1) = sec^2 (xy) [x "dy"/"dx" + y "d"/"dx" (x)]`
`"x" "dy"/"dx" + y = sec^2(xy) [x "dy"/"dx" + y]`
`"x" "dy"/"dx" + y = x sec^2 (xy) "dy"/"dx" + y sec^2 (xy)`
`"x" "dy"/"dx" - x sec^2 (xy) "dy"/"dx" = y sec^2 (xy) - y`
`"dy"/"dx" [x - x sec^2 (xy)] = y[sec^2 (xy) - 1]`
`"dy"/"dx" = (y[sec^2 (xy) - 1])/(x[1 - sec^2 (xy)])`
`= y/x (-1) = (-y)/x`
APPEARS IN
संबंधित प्रश्न
Differentiate the following with respect to x.
`(3 + 2x - x^2)/x`
Differentiate the following with respect to x.
`e^x/(1 + x)`
Differentiate the following with respect to x.
`e^x/(1 + e^x)`
Differentiate the following with respect to x.
ex (x + log x)
Differentiate the following with respect to x.
sin x cos x
Differentiate the following with respect to x.
`sqrt(1 + x^2)`
Find `"dy"/"dx"` for the following function.
x3 + y3 + 3axy = 1
Find `"dy"/"dx"` of the following function:
x = ct, y = `c/t`
If xy2 = 1, then prove that `2 "dy"/"dx" + y^3`= 0
If y = 2 sin x + 3 cos x, then show that y2 + y = 0.