Advertisements
Advertisements
प्रश्न
Differentiate the following with respect to x.
`1/sqrt(1 + x^2)`
उत्तर
For the following problems chain rule to be used:
`"d"/"dx"` f(g(x)) = f'(g(x)) . g'(x)
`"d"/"dx"` [f(x)]n = n[f(x)]n-1 × `"d"/"dx"`f(x)
Let y = `1/sqrt(1 + x^2)`
y = `(1 + x^2)^(- 1/2)`
Here n = `- 1/2`; f(x) = 1 + x2
`"dy"/"dx" = - 1/2(1 + x^2)^(- 1/2 - 1) "d"/"dx" (1 + x^2)`
`= - 1/2 (1 + x^2)^(- 3/2)`(0 + 2x)
`= - 1/2 1/(1 + x^2)^(3/2)`(2x)
`= - x/(sqrt (1 + x^2))^3`
`= (-x)/(sqrt((x + x^2)^2) sqrt(1 + x^2))`
`= (-x)/((1 + x^2)sqrt(1 + x^2))`
APPEARS IN
संबंधित प्रश्न
Differentiate the following with respect to x.
`sqrtx + 1/root(3)(x) + e^x`
Differentiate the following with respect to x.
`(x^2 + x + 1)/(x^2 - x + 1)`
Differentiate the following with respect to x.
sin x cos x
Differentiate the following with respect to x.
x3 ex
Differentiate the following with respect to x.
(ax2 + bx + c)n
Differentiate the following with respect to x.
sin(x2)
If `xsqrt(1 + y) + ysqrt(1 + x)` = 0 and x ≠ y, then prove that `"dy"/"dx" = - 1/(x + 1)^2`
Find y2 for the following function:
x = a cosθ, y = a sinθ
If y = 500e7x + 600e-7x, then show that y2 – 49y = 0.
If y = sin(log x), then show that x2y2 + xy1 + y = 0.