हिंदी

Find the Eccentricity, Coordinates of Foci, Length of the Latus-rectum of the Ellipse:(I) 4x2 + 9y2 = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the eccentricity, coordinates of foci, length of the latus-rectum of the ellipse:
 4x2 + 9y2 = 1

संक्षेप में उत्तर

उत्तर

\[4 x^2 + 9 y^2 = 1\]
\[ \Rightarrow \frac{x^2}{\frac{1}{4}} + \frac{y^2}{\frac{1}{9}} = 1\]
\[\text{ This is of the form }  \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \text{ where a} ^2 = \frac{1}{4} \text{ and } b^2 = \frac{1}{9}, i . e . a = \frac{1}{2}\text{ and }  b = \frac{1}{3} . \]
\[\text{ Clearly a } > b\]
\[\text{ Now, } e = \sqrt{1 - \frac{b^2}{a^2}}\]
\[ \Rightarrow e = \sqrt{1 - \frac{\frac{1}{9}}{\frac{1}{4}}}\]
\[ \Rightarrow e = \sqrt{1 - \frac{4}{9}}\]
\[ \Rightarrow e = \frac{\sqrt{5}}{3}\]
\[\text{ Coordinates of the foci } = \left( \pm ae, 0 \right) = \left( \pm \frac{\sqrt{5}}{6}, o \right)\]
\[\text{ Length of the latus rectum} =\frac{2 b^2}{a}\]
\[ = \frac{2 \times \frac{1}{9}}{\frac{1}{2}}\]
\[ = \frac{4}{9}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 26: Ellipse - Exercise 26.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 26 Ellipse
Exercise 26.1 | Q 3.1 | पृष्ठ २२

संबंधित प्रश्न

Find the equation of the ellipse whose focus is (1, −2), the directrix 3x − 2y + 5 = 0 and eccentricity equal to 1/2.

 

Find the eccentricity, coordinates of foci, length of the latus-rectum of the ellipse:

 5x2 + 4y2 = 1


Find the eccentricity, coordinates of foci, length of the latus-rectum of the ellipse:

 4x2 + 3y2 = 1


Find the eccentricity, coordinates of foci, length of the latus-rectum of the ellipse:

 25x2 + 16y2 = 1600.


Find the eccentricity, coordinates of foci, length of the latus-rectum of the ellipse:

 9x2 + 25y2 = 225

 

Find the equation of the ellipse whose foci are (4, 0) and (−4, 0), eccentricity = 1/3. 


Find the equation of the ellipse in the standard form whose minor axis is equal to the distance between foci and whose latus-rectum is 10. 


Find the equation of an ellipse whose eccentricity is 2/3, the latus-rectum is 5 and the centre is at the origin.


Find the equation of an ellipse with its foci on y-axis, eccentricity 3/4, centre at the origin and passing through (6, 4). 


Find the equation of an ellipse whose axes lie along coordinate axes and which passes through (4, 3) and (−1, 4). 


Find the equation of an ellipse whose axes lie along the coordinate axes, which passes through the point (−3, 1) and has eccentricity equal to \[\sqrt{2/5}\] 


Write the centre and eccentricity of the ellipse 3x2 + 4y2 − 6x + 8y − 5 = 0. 


Write the eccentricity of an ellipse whose latus-rectum is one half of the minor axis.


If the distance between the foci of an ellipse is equal to the length of the latus-rectum, write the eccentricity of the ellipse.


For the hyperbola 9x2 – 16y2 = 144, find the vertices, foci and eccentricity


If e is the eccentricity of the ellipse `x^2/a^2 + y^2/b^2` = 1 (a < b), then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×