Advertisements
Advertisements
प्रश्न
Find out the wavelength of the electron orbiting in the ground state of hydrogen atom.
उत्तर
Radius of ground state of hydrogen atom
= 0.53 Å = 0.53 x 10-10 m
According to de Brogile relation
2πr = nλ
For ground state n = 1
2 x 3.14 x 0.53 x 10-10 = 1 x λ
∴ λ = 3.32 x 10-10 m
= 3.32 Å
APPEARS IN
संबंधित प्रश्न
Calculate the minimum wavelength of the spectral line present in Balmer series of hydrogen
The ground state energy of hydrogen atom is −13.6 eV. If and electron make a transition from the energy level −0.85 eV to −3.4 eV, calculate spectrum does his wavelength belong?
The ground state energy of hydrogen atom is −13.6 eV. If an electron make a transition from an energy level −0.85 eV to −1.51 eV, calculate the wavelength of the spectral line emitted. To which series of hydrogen spectrum does this wavelength belong?
Using an expression for energy of electron, obtain the Bohr’s formula for hydrogen spectral lines.
A spectroscopic instrument can resolve two nearby wavelengths λ and λ + Δλ if λ/Δλ is smaller than 8000. This is used to study the spectral lines of the Balmer series of hydrogen. Approximately how many lines will be resolved by the instrument?
Hydrogen spectrum consists of discrete bright lines in a dark background and it is specifically known as hydrogen emission spectrum. There is one more type of hydrogen spectrum that exists where we get dark lines on the bright background, it is known as absorption spectrum. Balmer found an empirical formula by the observation of a small part of this spectrum and it is represented by
`1/lambda = "R"(1/2^2 - 1/"n"^2)`, where n = 3, 4, 5,....
For Lyman series, the emission is from first state to nth state, for Paschen series, it is from third state to nth state, for Brackett series, it is from fourth state to nth state and for P fund series, it is from fifth state to nth state.
Number of spectral lines in hydrogen atom is ______.
Hydrogen spectrum consists of discrete bright lines in a dark background and it is specifically known as hydrogen emission spectrum. There is one more type of hydrogen spectrum that exists where we get dark lines on the bright background, it is known as the absorption spectrum. Balmer found an empirical formula by the observation of a small part of this spectrum and it is represented by
`1/lambda = "R"(1/2^2 - 1/"n"^2)`, where n = 3, 4, 5,....
For Lyman series, the emission is from first state to nth state, for Paschen series, it is from third state to nth state, for Brackett series, it is from fourth state to nth state and for P fund series, it is from fifth state to nth state.
Which series of hydrogen spectrum corresponds to ultraviolet region?
Hydrogen spectrum consists of discrete bright lines in a dark background and it is specifically known as hydrogen emission spectrum. There is one more type of hydrogen spectrum that exists where we get dark lines on the bright background, it is known as absorption spectrum. Balmer found an empirical formula by the observation of a small part of this spectrum and it is represented by
`1/lambda = "R"(1/2^2 - 1/"n"^2)`, where n = 3, 4, 5,....
For Lyman series, the emission is from first state to nth state, for Paschen series, it is from third state to nth state, for Brackett series, it is from fourth state to nth state and for P fund series, it is from fifth state to nth state.
Which of the following lines of the H-atom spectrum belongs to the Balmer series?
In the given figure, the energy levels of hydrogen atom have been shown along with some transitions marked A, B, C, D and E.
The transitions A, B and C respectively represents
A particular hydrogen-like ion emits radiation of frequency 2.92 × 1015 Hz when it makes the transition from n = 3 to n = 1. The frequency in Hz of radiation emitted in transition from n = 2 to n = 1 will be ______.