Advertisements
Advertisements
рдкреНрд░рд╢реНрди
Find the perimeter of the curve r=a(1-cos ЁЭЬ╜)
рдпреЛрдЧ
рдЙрддреНрддрд░
Curve : r=a(1-cos ЁЭЬ╜)
Perimeter of given curve is ,
`s=2xxint_0^pisqrt(r^2+((dr)/(d theta))^2d theta)`
`(dr)/(d theta)=a(sin theta)=>((dr)/(d theta))^2=a^2sin^2theta`
`r^2+((dr)/(d theta))^2=a^2[1-2cos theta+cos^2 theta]+a^2sin^2theta`
`sqrt(r^2+((dr)/(d theta))^2)=sqrt(2a)(1-cos theta)^(1/2)`
`=sqrt(2a)sqrt2sin(theta/2)`
`therefore s = 2int_0^pisqrt(2a)sqrt2sin(theta/2)d theta`
`=4aint_0^pisin(theta/2)d theta`
`=4a[-2cos(theta/2)]_0^pi`
∴ S = 8a
shaalaa.com
Rectification of Plane Curves
рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
Show that the length of curve `9ay^2=x(x-3a)^2 "is" 4sqrt3a`