Advertisements
Advertisements
प्रश्न
Show that the length of curve `9ay^2=x(x-3a)^2 "is" 4sqrt3a`
उत्तर
Curve : `9ay^2=x(x-3a)^2` ................(1)
The given curve is strophoid.
Differentiate eqn (1) w.r.t x,
`18ay(dy)/(dx)=2x(x-3a)+(x-3a)^2`
`18ay(dy)/(dx)=2x(x-3a)+(x-3a)^2`
`therefore(dy)/(dx)=((x-3a)(x-a))/(6ay)`
Squaring both the sides,
`((dy)/(dx))^2=((x-3a)^2(x-a)^2)/(36a^2y^2)`
`therefore((dy)/(dx))^2=((x-3a)^2(x-a)^2)/(4ax(x-3a)^2)` ............from(1)
`therefore((dy)/(dx))^2=(x-a)^2/(4ax)`
The perimeter of given curve is ,
`S=int_0^(3a)sqrt(1+((dy)/(dx))^2dx)=int_0^(3a)sqrt(1+(x-a)^2/(4ax))dx=int_0^(3a)sqrt((x+a)^2/(4ax))dx`
`therefore S=int_0^(3a) (x+a)/(2sqrtxsqrta)dx`
`therefore S=1/(2sqrta)int_0^(3a) (x+a)/sqrtxdx`
`=1/(2sqrta)[(2xsqrtx)/3+2sqrtx]_0^(3a)`
`=1/(2sqrta)[(2asqrt(3a))/1+2sqrt3a]`
`thereforeS=2sqrt3` ......................( Half curve length)
∴ The total length of given curve = 2 S = 4`sqrt3` units.