हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान 2nd PUC Class 12

Find the Q-value and the Kinetic Energy of the Emitted α-particle in the α-decay of _88^226 Ra and _86^220rn - Physics

Advertisements
Advertisements

प्रश्न

Find the Q-value and the kinetic energy of the emitted α-particle in the α-decay of `""_88^226 "Ra"`.

Given `"m"(""_88^226"Ra")` = 226.02540 u, `"m"(""_86^222 "Rn")` = 222.01750 u, 

`"m"(""_86^220 "Rn")`= 220.01137 u, `"m"(""_84^216 "Po")`= 216.00189 u.

संख्यात्मक

उत्तर

Alpha particle decay of `""_88^226"Ra"` emits a helium nucleus. As a result, its mass number reduces to (226 − 4) 222 and its atomic number reduces to (88 − 2) 86. This is shown in the following nuclear reaction.

\[\ce{^226_88 Ra -> ^222_86 Ra + ^4_2He}\]

Q-value of

emitted α-particle = (Sum of initial mass − Sum of final mass) c2

Where,

c = Speed of light

It is given that:

`"m"(""_88^226"Ra")` = 226.02540 u

`"m"(""_86^222"Rn")` = 222.01750 u

`"m"(""_2^4"He")` = 4.002603 u

Q-value = [226.02540 − (222.01750 + 4.002603)] u c2 
= 0.005297 u c2

But 1 u = 931.5 MeV/c2

∴ Q = 0.005297 × 931.5 ≈ 4.94 MeV

Kinetic energy of the α-particle  = `("Mass number after decay"/"Mass number before decay") xx "Q"`

` = 222/226 xx 4.94 = 4.85 " MeV"`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Nuclei - Exercise [पृष्ठ ४६३]

APPEARS IN

एनसीईआरटी Physics [English] Class 12
अध्याय 13 Nuclei
Exercise | Q 13.12 (a) | पृष्ठ ४६३
एनसीईआरटी Physics [English] Class 12
अध्याय 13 Nuclei
Exercise | Q 12.1 | पृष्ठ ४६३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

A nucleus with mass number A = 240 and BE/A = 7.6 MeV breaks into two fragments, each of A = 120 with BE/A = 8.5 MeV. Calculate the released energy.


In the study of Geiger-Marsdon experiment on scattering of α particles by a thin foil of gold, draw the trajectory of α-particles in the coulomb field of target nucleus. Explain briefly how one gets the information on the size of the nucleus from this study.

From the relation R = R0 A1/3, where R0 is constant and A is the mass number of the nucleus, show that nuclear matter density is independent of A


Boron has two stable isotopes, `""_5^10"B"` and `""_5^11"B"`. Their respective masses are 10.01294 u and 11.00931 u, and the atomic mass of boron is 10.811 u. Find the abundances of  `""_5^10"B"`  and `""_5^11"B"`.


The three stable isotopes of neon: `""_10^20"Ne"`, `""_10^21"Ne"` and `""_10^22"Ne"` have respective abundances of 90.51%, 0.27% and 9.22%. The atomic masses of the three isotopes are 19.99 u, 20.99 u and 21.99 u, respectively. Obtain the average atomic mass of neon.


What do you mean by polar molecules and non-polar molecules? Give ‘one’ example each.


Name a material which is used in making control rods in a nuclear reactor.


Write one balanced equation to show Emission of `beta^-` (i.e. a negative beta particle)


Atomic mass unit (u) is defined as ________ of the mass of the carbon (12C) atom.


The nuclei of isotopes of a given element contain the same number of ______.


All nuclides with same mass number A are called ______.


A vessel contains oil (density 0.8 g/cm3) over mercury (density 13.6 g/cm3). A sphere of homogeneous composition floats with half its volume immersed in mercury and the other half in oil. The density of the material of the sphere in g/cm3 is ______.


A nucleus yYx emits one α and two β particles. The resulting nucleus is ______.


The mass number of a nucleus is equal to the number of:-


Are the nucleons fundamental particles, or do they consist of still smaller parts? One way to find out is to probe a nucleon just as Rutherford probed an atom. What should be the kinetic energy of an electron for it to be able to probe a nucleon? Assume the diameter of a nucleon to be approximately 10–15 m.


Two nuclei have different mass numbers A1 and A2. Are these nuclei necessarily the isotopes of the same element? Explain.


Two nuclei may have the same radius, even though they contain different numbers of protons and neutrons. Explain.


Mass numbers of two nuclei are in the ratio of 4 : 3. Their nuclear densities will be in the ratio of ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×