Advertisements
Advertisements
рдкреНрд░рд╢реНрди
Find the quadratic polynomial, sum of whose zeroes is 8 and their product is 12. Hence, find the zeroes of the polynomial.
рдЙрддреНрддрд░
Let ЁЭЫ╝ and ЁЭЫ╜ be the zeroes of the required polynomial f(x).
Then (ЁЭЫ╝ + ЁЭЫ╜) = 8 and ЁЭЫ╝ЁЭЫ╜ = 12
∴ `f(x)=x^2-(∝+β)x+∝β `
`⇒ f(x)=x^2-8x+12`
Hence, required polynomial `f(x)=x^2-8x+12`
`∴ f(x)=0 ⇒ x^2-8x+12=0`
`⇒ x^2-(6x+2x)+12=0`
`⇒ x^2-6x-2x+12=0`
`⇒x(x-6)-2(x-6)=0`
`⇒ (x-2) (x-6)=0`
`⇒ (x-2)=0 or (x-6)=0`
`⇒x=2 or x=6`
So, the zeroes of f(x) are 2 and 6.
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients:
t2 – 15
Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, − 7, − 14 respectively
If ЁЭЫ╝ and ЁЭЫ╜ are the zeros of the quadratic polynomial f(x) = x2 − 5x + 4, find the value of `1/alpha+1/beta-2alphabeta`
Find the zeroes of the quadratic polynomial f(x) = 4x2 - 4x - 3 and verify the relation between its zeroes and coefficients.
If `x =2/3` and x = -3 are the roots of the quadratic equation `ax^2+2ax+5x ` then find the value of a and b.
Find all the zeroes of `(x^4 + x^3 – 23x^2 – 3x + 60)`, if it is given that two of its zeroes are `sqrt3 and –sqrt3`.
If two zeroes of the polynomial x3 + x2 − 9x − 9 are 3 and −3, then its third zero is
Can the quadratic polynomial x2 + kx + k have equal zeroes for some odd integer k > 1?
If two of the zeroes of a cubic polynomial are zero, then it does not have linear and constant terms.
If α, β are zeroes of the quadratic polynomial x2 – 5x + 6, form another quadratic polynomial whose zeroes are `1/α, 1/β`.