Advertisements
Advertisements
प्रश्न
If α, β are zeroes of the quadratic polynomial x2 – 5x + 6, form another quadratic polynomial whose zeroes are `1/α, 1/β`.
उत्तर
p(x) = x2 − 5x + 6
`alpha+beta = (-"coefficient of" x)/("coefficient of" x^2) = (-(-5))/1 = 5`
`alpha beta = ("constant term")/("coefficient of" x^2) = 6/1 = 6`
`1/alpha + 1/beta = (alpha+beta)/(alpha beta) = 5/6`
`1/alpha xx 1/beta = 1/(alpha beta) = 1/6`
x2 − (A + B)x + AB = 0
`x^2 - (5/6)x + 1/6 = 0`
6x2 − 5x + 1 = 0
6x2 − 5x + 1
APPEARS IN
संबंधित प्रश्न
Find a quadratic polynomial with the given numbers as the sum and product of its zeroes respectively.
`0, sqrt5`
If α and β are the zeroes of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/(aalpha+b)+1/(abeta+b)`.
If α and β are the zeros of the quadratic polynomial p(s) = 3s2 − 6s + 4, find the value of `alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta`
If α and β are the zeros of the quadratic polynomial f(x) = x2 − px + q, prove that `alpha^2/beta^2+beta^2/alpha^2=p^4/q^2-(4p^2)/q+2`
Find the quadratic polynomial whose zeroes are `2/3` and `-1/4`. Verify the relation between the coefficients and the zeroes of the polynomial.
By actual division, show that x2 – 3 is a factor of` 2x^4 + 3x^3 – 2x^2 – 9x – 12.`
Find all the zeroes of `(x^4 + x^3 – 23x^2 – 3x + 60)`, if it is given that two of its zeroes are `sqrt3 and –sqrt3`.
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`2x^2 + (7/2)x + 3/4`
Find the zeroes of the quadratic polynomial 6x2 – 3 – 7x and verify the relationship between the zeroes and the coefficients.
If p(x) = x2 + 5x + 6, then p(– 2) is ______.