Advertisements
Advertisements
प्रश्न
If α and β are the zeros of the quadratic polynomial p(s) = 3s2 − 6s + 4, find the value of `alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta`
उत्तर
Since α and β are the zeros of the quadratic polynomial p(s) = 3s2 − 6s + 4
`alpha+beta="-coefficient of x"/("coefficient of "x^2)`
`alpha+beta=(-(-6))/3`
`alpha+beta=6/3`
`alpha+beta=2`
`alphabeta="constant term"/("coefficient of "x^2)`
`alphabeta=4/3`
We have, `alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta`
`=(alpha^2+beta^2)/(alphabeta)+2[1/alpha+1/beta+3alphabeta]`
`=((alpha+beta)^2-2alphabeta)/(alphabeta)+2[(alpha+beta)/(alphabeta)]+3alphabeta`
By substituting `alpha+beta=2 " and "alphabeta=4/3` we get,
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=((2)^2-2(4/3))/(4/3)+2((2))/(4/3)+3(4/3)`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=(4-8/3)/(4/3)+4/(4/3)+12/3`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=((4xx3)/(1xx3)-8/3)/(4/3)+4/(4/3)+12/3`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=((12-8)/3)/(4/3)+4/(4/3)+12/3`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=(4/3)/(4/3)+4/(4/3)+12/3`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=4/3xx3/4+(4xx3)/4+12/3`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=1+12/4+12/3`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=(1xx12)/(1xx12)+(12xx3)/(4xx3)+(12xx4)/(3xx4)`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=(12+36+48)/12`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=(48+48)/12`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=96/12`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=8`
Hence, the value of `alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta " is "8`
APPEARS IN
संबंधित प्रश्न
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/alpha+1/beta-2alphabeta`
If 𝛼 and 𝛽 are the zeros of the quadratic polynomial f(x) = x2 − 5x + 4, find the value of `1/alpha+1/beta-2alphabeta`
Find the zeroes of the polynomial f(x) = `2sqrt3x^2-5x+sqrt3` and verify the relation between its zeroes and coefficients.
If 𝛼, 𝛽 are the zeroes of the polynomial f(x) = x2 + x – 2, then `(∝/β-∝/β)`
The product of the zeros of x3 + 4x2 + x − 6 is
If one of the zeroes of the quadratic polynomial (k – 1)x2 + k x + 1 is –3, then the value of k is ______.
Can the quadratic polynomial x2 + kx + k have equal zeroes for some odd integer k > 1?
The zeroes of the quadratic polynomial x2 + 99x + 127 are ______.
If α, β are the zeroes of the polynomial p(x) = 4x2 – 3x – 7, then `(1/α + 1/β)` is equal to ______.
If α, β are zeroes of quadratic polynomial 5x2 + 5x + 1, find the value of α2 + β2.