Advertisements
Advertisements
प्रश्न
If α and β are the zeros of the quadratic polynomial p(s) = 3s2 − 6s + 4, find the value of `alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta`
उत्तर
Since α and β are the zeros of the quadratic polynomial p(s) = 3s2 − 6s + 4
`alpha+beta="-coefficient of x"/("coefficient of "x^2)`
`alpha+beta=(-(-6))/3`
`alpha+beta=6/3`
`alpha+beta=2`
`alphabeta="constant term"/("coefficient of "x^2)`
`alphabeta=4/3`
We have, `alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta`
`=(alpha^2+beta^2)/(alphabeta)+2[1/alpha+1/beta+3alphabeta]`
`=((alpha+beta)^2-2alphabeta)/(alphabeta)+2[(alpha+beta)/(alphabeta)]+3alphabeta`
By substituting `alpha+beta=2 " and "alphabeta=4/3` we get,
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=((2)^2-2(4/3))/(4/3)+2((2))/(4/3)+3(4/3)`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=(4-8/3)/(4/3)+4/(4/3)+12/3`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=((4xx3)/(1xx3)-8/3)/(4/3)+4/(4/3)+12/3`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=((12-8)/3)/(4/3)+4/(4/3)+12/3`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=(4/3)/(4/3)+4/(4/3)+12/3`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=4/3xx3/4+(4xx3)/4+12/3`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=1+12/4+12/3`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=(1xx12)/(1xx12)+(12xx3)/(4xx3)+(12xx4)/(3xx4)`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=(12+36+48)/12`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=(48+48)/12`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=96/12`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=8`
Hence, the value of `alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta " is "8`
APPEARS IN
संबंधित प्रश्न
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients.
4u2 + 8u
Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
`1/4 , -1`
If two zeroes of the polynomial x4 – 6x3 – 26x2 + 138x – 35 are 2 ± `sqrt3` , find other zeroes
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate :
`a(α^2/β+β^2/α)+b(α/β+β/α)`
If (x+a) is a factor of the polynomial `2x^2 + 2ax + 5x + 10`, find the value of a.
Find a cubic polynomial whose zeroes are 2, -3and 4.
If α, β, γ are the zeros of the polynomial f(x) = ax3 + bx2 + cx + d, then α2 + β2 + γ2 =
A quadratic polynomial, whose zeroes are –3 and 4, is ______.
For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.
`-2sqrt(3), -9`
If p(x) = x2 + 5x + 6, then p(– 2) is ______.