Advertisements
Advertisements
प्रश्न
If α and β are the zeros of the quadratic polynomial p(y) = 5y2 − 7y + 1, find the value of `1/alpha+1/beta`
उत्तर
Since 𝛼 𝑎𝑛𝑑 𝛽 are the zeroes of the polynomials
p(y) = 5y2 – 7y + 1
Sum of the zeroes `alpha+beta="-coeeficient of x"/("coefficient of "x^2)`
`=-(-7)/5`
`=7/5`
Product of zeroes `=alphabeta="constant term"/"coefficient of "x^2`
`=1/5`
We have, `1/alpha+1/beta=(alpha+beta)/(alphabeta)`
By substituting `alpha+beta=7/5` and `alphabeta=1/5` we get,
`1/alpha+1/beta=(7/5)/(1/5)`
`1/alpha+1/beta=7/5xx5/1`
`1/alpha+1/beta=7`
Hence, the value of `1/alpha+1/beta` is 7
APPEARS IN
संबंधित प्रश्न
Find a quadratic polynomial with the given numbers as the sum and product of its zeroes respectively.
`-1/4 ,1/4`
Find all zeroes of the polynomial `(2x^4 - 9x^3 + 5x^2 + 3x - 1)` if two of its zeroes are `(2 + sqrt3)` and `(2 - sqrt3)`
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate α - β
If α and β are the zeros of the quadratic polynomial f(x) = x2 − px + q, prove that `alpha^2/beta^2+beta^2/alpha^2=p^4/q^2-(4p^2)/q+2`
If one zero of the quadratic polynomial f(x) = 4x2 − 8kx − 9 is negative of the other, find the value of k.
Find the zeroes of the quadratic polynomial `(8x^2 ˗ 4)` and verify the relation between the zeroes and the coefficients
Find a cubic polynomial whose zeroes are `1/2, 1 and -3.`
Define a polynomial with real coefficients.
What should be added to the polynomial x2 − 5x + 4, so that 3 is the zero of the resulting polynomial?
For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.
`(-8)/3, 4/3`