मराठी

If α And β Are the Zeros of the Quadratic Polynomial P(Y) = 5y2 − 7y + 1, Find the Value of `1/Alpha+1/Beta` - Mathematics

Advertisements
Advertisements

प्रश्न

If α and β are the zeros of the quadratic polynomial p(y) = 5y2 − 7y + 1, find the value of `1/alpha+1/beta`

उत्तर

Since 𝛼 𝑎𝑛𝑑 𝛽 are the zeroes of the polynomials

p(y) = 5y2 – 7y + 1

Sum of the zeroes `alpha+beta="-coeeficient of x"/("coefficient of "x^2)`

`=-(-7)/5`

`=7/5`

Product of zeroes `=alphabeta="constant term"/"coefficient of "x^2`

`=1/5`

We have, `1/alpha+1/beta=(alpha+beta)/(alphabeta)`

By substituting `alpha+beta=7/5` and `alphabeta=1/5` we get,

`1/alpha+1/beta=(7/5)/(1/5)`

`1/alpha+1/beta=7/5xx5/1`

`1/alpha+1/beta=7`

Hence, the value of `1/alpha+1/beta` is 7

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Polynomials - Exercise 2.1 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 2 Polynomials
Exercise 2.1 | Q 9 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×