Advertisements
Advertisements
प्रश्न
Find a quadratic polynomial with the given numbers as the sum and product of its zeroes respectively.
`-1/4 ,1/4`
उत्तर
Given: α + β = `-1/4`, αβ = `1/4`
Since ax2 + bx + c = k[x2 - (α + β)x + αβ]
Or `(ax^2 + bx + c)/k = x^2 - (-1/4x) + 1/4)`
Or `(ax^2 + bx + c)/k = (4x^2 + 4x + 1)/4`
Here k is a constant term, by comparing k = 4
Hence, ax2 + bx + c = `4x^2 + 4x + 1`
The quadratic polynomial is `4x^2 + 4x + 1`.
APPEARS IN
संबंधित प्रश्न
Prove relation between the zeros and the coefficient of the quadratic polynomial ax2 + bx + c
If 𝛼 and 𝛽 are the zeros of the quadratic polynomial f(x) = x2 − 5x + 4, find the value of `1/alpha+1/beta-2alphabeta`
If one zero of the quadratic polynomial f(x) = 4x2 − 8kx − 9 is negative of the other, find the value of k.
If α and β are the zeros of a quadratic polynomial such that α + β = 24 and α − β = 8, find a quadratic polynomial having α and β as its zeros.
If If α and β are the zeros of the quadratic polynomial f(x) = x2 – 2x + 3, find a polynomial whose roots are α + 2, β + 2.
Find the quadratic polynomial, sum of whose zeroes is 8 and their product is 12. Hence, find the zeroes of the polynomial.
If `x =2/3` and x = -3 are the roots of the quadratic equation `ax^2+2ax+5x ` then find the value of a and b.
If (x+a) is a factor of the polynomial `2x^2 + 2ax + 5x + 10`, find the value of a.
If 1 and –2 are two zeroes of the polynomial `(x^3 – 4x^2 – 7x + 10)`, find its third zero.
What should be added to the polynomial x2 − 5x + 4, so that 3 is the zero of the resulting polynomial?
If two zeroes of the polynomial x3 + x2 − 9x − 9 are 3 and −3, then its third zero is
Case Study -1
The figure given alongside shows the path of a diver, when she takes a jump from the diving board. Clearly it is a parabola.
Annie was standing on a diving board, 48 feet above the water level. She took a dive into the pool. Her height (in feet) above the water level at any time ‘t’ in seconds is given by the polynomial h(t) such that h(t) = -16t2 + 8t + k.
The zeroes of the polynomial r(t) = -12t2 + (k - 3)t + 48 are negative of each other. Then k is ______.
An asana is a body posture, originally and still a general term for a sitting meditation pose, and later extended in hatha yoga and modern yoga as exercise, to any type of pose or position, adding reclining, standing, inverted, twisting, and balancing poses. In the figure, one can observe that poses can be related to representation of quadratic polynomial.
The zeroes of the quadratic polynomial `4sqrt3"x"^2 + 5"x" - 2sqrt3` are:
Basketball and soccer are played with a spherical ball. Even though an athlete dribbles the ball in both sports, a basketball player uses his hands and a soccer player uses his feet. Usually, soccer is played outdoors on a large field and basketball is played indoor on a court made out of wood. The projectile (path traced) of soccer ball and basketball are in the form of parabola representing quadratic polynomial.
What will be the expression of the polynomial?
For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.
`-2sqrt(3), -9`
If the zeroes of the polynomial x2 + px + q are double in value to the zeroes of the polynomial 2x2 – 5x – 3, then find the values of p and q.
If p(x) = x2 + 5x + 6, then p(– 2) is ______.
Find the zeroes of the quadratic polynomial x2 + 6x + 8 and verify the relationship between the zeroes and the coefficients.
If α, β are zeroes of quadratic polynomial 5x2 + 5x + 1, find the value of α2 + β2.
Find the zeroes of the quadratic polynomial 4s2 – 4s + 1 and verify the relationship between the zeroes and the coefficients.