Advertisements
Advertisements
प्रश्न
If α and β are the zeros of the quadratic polynomial p(y) = 5y2 − 7y + 1, find the value of `1/alpha+1/beta`
उत्तर
Since 𝛼 𝑎𝑛𝑑 𝛽 are the zeroes of the polynomials
p(y) = 5y2 – 7y + 1
Sum of the zeroes `alpha+beta="-coeeficient of x"/("coefficient of "x^2)`
`=-(-7)/5`
`=7/5`
Product of zeroes `=alphabeta="constant term"/"coefficient of "x^2`
`=1/5`
We have, `1/alpha+1/beta=(alpha+beta)/(alphabeta)`
By substituting `alpha+beta=7/5` and `alphabeta=1/5` we get,
`1/alpha+1/beta=(7/5)/(1/5)`
`1/alpha+1/beta=7/5xx5/1`
`1/alpha+1/beta=7`
Hence, the value of `1/alpha+1/beta` is 7
APPEARS IN
संबंधित प्रश्न
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/alpha-1/beta`
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate α4 + β4
If α and β are the zeroes of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/(aalpha+b)+1/(abeta+b)`.
If 𝛼 and 𝛽 are the zeros of the quadratic polynomial p(x) = 4x2 − 5x −1, find the value of α2β + αβ2.
If If α and β are the zeros of the quadratic polynomial f(x) = x2 – 2x + 3, find a polynomial whose roots are `(alpha-1)/(alpha+1)` , `(beta-1)/(beta+1)`
Find the zeroes of the polynomial f(x) = `2sqrt3x^2-5x+sqrt3` and verify the relation between its zeroes and coefficients.
Find the quadratic polynomial whose zeroes are `2/3` and `-1/4` Verify the relation between the coefficients and the zeroes of the polynomial.
If 𝛼, 𝛽 are the zeroes of the polynomial f(x) = x2 + x – 2, then `(∝/β-∝/β)`
The number of polynomials having zeroes as –2 and 5 is ______.
Find the zeroes of the quadratic polynomial x2 + 6x + 8 and verify the relationship between the zeroes and the coefficients.