рд╣рд┐рдВрджреА

If ЁЭЫ╝, ЁЭЫ╜ Are the Zeroes of the Polynomial F(X) = X2 + X тАУ 2, Then `(тИЭ/╬▓-тИЭ/╬▓)` - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

If ЁЭЫ╝, ЁЭЫ╜ are the zeroes of the polynomial f(x) = x2 + x – 2, then `(∝/β-∝/β)` 

 

рдЙрддреНрддрд░

By using the relationship between the zeroes of the quadratic polynomial. We have  

Sum of zeroes=`(-("Coefficient of x"))/("Coefficient of" x^2)` and Product of zeroes =`("Constant term")/("Coefficient of" x^2)` 

∴ ЁЭЫ╝ + ЁЭЫ╜ =`-1/1` and ЁЭЫ╝ЁЭЫ╜ = `(-2)/1` 

⇒  ЁЭЫ╝ + ЁЭЫ╜ = −1 and ЁЭЫ╝ЁЭЫ╜ = −2 

Now, `(1/∝-1/β)^2=((β-∝)/(∝β ))` 

=`((∝+β)^2-4∝β)/(∝β)^2`       ` [тИ╡(β-∝)^2=(∝+β)^2-4∝β]` 

=`((-1)^2-4(-2))/((-2)^2)`          `[тИ╡∝+β=-1 and ∝β=-2]`

=`((-1)^2-4(-2))/4` 

=`9/4` 

тИ╡` (1/∝-1/β)^2=9/4` 

⇒`1/∝-1/β=+-3/2`

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 2: Polynomials - Exercises 3

APPEARS IN

рд╡реАрдбрд┐рдпреЛ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [2]

Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×