Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If a and are the zeros of the quadratic polynomial f(x) = ЁЭСе2 − ЁЭСе − 4, find the value of `1/alpha+1/beta-alphabeta`
рдЙрддреНрддрд░
Since ЁЭЫ╝ + ЁЭЫ╜ are the zeroes of the polynomial: ЁЭСе2 − ЁЭСе − 4
Sum of the roots (α + β) = 1
Product of the roots (αβ) = −4
`1/alpha+1/beta-alphabeta`
`=(alpha+beta)/(alphabeta)-alphabeta`
`=(1/-4)+4=(-1/4)+4=(-1+16)/4=15/4`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
Find the zeros of the quadratic polynomial 9x2 - 5 and verify the relation between the zeros and its coefficients.
Verify that the numbers given along side of the cubic polynomials are their zeroes. Also verify the relationship between the zeroes and the coefficients.
`2x^3 + x^2 – 5x + 2 ; 1/2, 1, – 2`
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients.
6x2 – 3 – 7x
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate :
`a(α^2/β+β^2/α)+b(α/β+β/α)`
If one zero of the quadratic polynomial f(x) = 4x2 − 8kx − 9 is negative of the other, find the value of k.
If If α and β are the zeros of the quadratic polynomial f(x) = x2 – 2x + 3, find a polynomial whose roots are `(alpha-1)/(alpha+1)` , `(beta-1)/(beta+1)`
Find the condition that the zeros of the polynomial f(x) = x3 + 3px2 + 3qx + r may be in A.P.
Find the quadratic polynomial, sum of whose zeroes is 0 and their product is -1. Hence, find the zeroes of the polynomial.
If α, β, γ are the zeros of the polynomial f(x) = ax3 + bx2 + cx + d, the\[\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} =\]
Find the zeroes of the polynomial x2 + 4x – 12.