Advertisements
Advertisements
प्रश्न
If α, β, γ are the zeros of the polynomial f(x) = ax3 + bx2 + cx + d, the\[\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} =\]
विकल्प
- \[- \frac{b}{d}\]
- \[\frac{c}{d}\]
- \[- \frac{c}{d}\]
- \[- \frac{c}{a}\]
उत्तर
We have to find the value of `1/alpha + a/beta+1/y`
Given `alpha , beta ,y` be the zeros of the polynomial f(x) = ax3 + bx2 + cx + d
We know that
`alpha ß + beta y + yalpha= - (text{coefficient of x})/(text{coefficient of } x^3)`
`= c/a`
`alphabetay= (-\text{Coefficient of x})/(\text{Coefficient of}x^3)`
`=(-d)/a`
So
`1/alpha + 1/beta+1/y=((c)/a)/(-d/a)`
`1/alpha + 1/beta + 1/y = c/axx(-a/d)`
`1/alpha+ 1/beta+1/y =-c/d`
Hence, the correct choice is `(c)`.
APPEARS IN
संबंधित प्रश्न
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients:
4s2 – 4s + 1
Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients
`q(x)=sqrt3x^2+10x+7sqrt3`
Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients
`f(x)=x^2-(sqrt3+1)x+sqrt3`
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/alpha-1/beta`
If 𝛼 and 𝛽 are the zeros of the quadratic polynomial f(t) = t2 − 4t + 3, find the value of `alpha^4beta^3+alpha^3beta^4`
If α and β are the zeros of the quadratic polynomial f(x) = x2 − 3x − 2, find a quadratic polynomial whose zeroes are `1/(2alpha+beta)+1/(2beta+alpha)`
Find the zeroes of the quadratic polynomial `4x^2 - 4x + 1` and verify the relation between the zeroes and the coefficients.
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`2x^2 + (7/2)x + 3/4`
For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.
`(-8)/3, 4/3`
A quadratic polynomial the sum and product of whose zeroes are – 3 and 2 respectively, is ______.