рд╣рд┐рдВрджреА

If ЁЭЫ╝ and ЁЭЫ╜ Are the Zeros of the Quadratic Polynomial F(X) = X2 тИТ 3x тИТ 2, Find a Quadratic Polynomial Whose Zeroes Are 12╬▒+B╬╖+12╬▓+Alpha - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

If ╬▒ and ╬▓ are the zeros of the quadratic polynomial f(x) = x2 тИТ 3x тИТ 2, find a quadratic polynomial whose zeroes are 12╬▒+╬▓+12╬▓+╬▒

рдЙрддреНрддрд░

Since ╬▒ and ╬▓ are the zeros of the quadratic polynomial f(x) = x2 тИТ 3x тИТ 2

The roots are ╬▒ and ╬▓

╬▒+╬▓=-coefficient of xcoefficient of x2

╬▒+╬▓=-(-31)

╬▒ + ╬▓ = -(-3)

╬▒ + ╬▓ = 3

╬▒╬▓=constant termcoefficient of x2

╬▒╬▓=-21

╬▒╬▓ = -2

Let S and P denote respectively the sum and the product of zero of the required polynomial . Then,

S=12╬▒+╬▓+12╬▓+╬▒

Taking least common factor then we have ,

S=12╬▒+╬▓├Ч2╬▓+╬▒2╬▓+╬▒+12╬▓+╬▒├Ч2╬▒+╬▓2╬▒+╬▓

S=2╬▓+╬▒(2╬▒+╬▓)(2╬▓+╬▒)+2╬▒+╬▓(2╬▓+╬▒)(2╬▒+╬▓)

S=2╬▓+╬▒+2╬▒+╬▓(2╬▒+╬▓)(2╬▓+╬▒)

S=3╬▓+3╬▒4╬▒╬▓+2╬▓2+2╬▒2+╬▓╬▒

S=3(╬▓+╬▒)5╬▒╬▓+2(╬▒2+╬▓2)

S=3(╬▓+╬▒)5╬▒╬▓+2[(╬▒+╬▓)2-2╬▒╬▓]

By substituting ╬▒ + ╬▓ = 3 and ╬▒╬▓ = -2 we get,

S=3(3)5(-2)+2[(3)2-2├Ч-2]

S=9-10+2(13)

S=9-10+26

S=916

 

P=12╬▒+╬▓├Ч12╬▓+╬▒

P=1(2╬▒+╬▓)(2╬▓+╬▒)

P=14╬▒╬▓+2╬▓2+2╬▒2+╬▓╬▒

P=15╬▒╬▓+2(╬▒2+╬▓2)

P=15╬▒╬▓+2[(╬▒+╬▓)2-2╬▒╬▓]

By substituting ╬▒ + ╬▓ = 3 and ╬▒╬▓ = -2 we get,

P=15(-2)+2[(3)2-2├Ч-2]

P=110+2[9+4]

P=110+2(13)

P=1-10+26

P=116

Hence ,the required polynomial f(x) is given by

f(x)=k(x2-Sx+P)

f(x)=k(x2-916x+116)

Hence, the required equation is f(x)=k(x2-916x+116) Where k is any non zero real number.

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 2: Polynomials - Exercise 2.1 [рдкреГрд╖реНрда рейрел]

APPEARS IN

рдЖрд░рдбреА рд╢рд░реНрдорд╛ Mathematics [English] Class 10
рдЕрдзреНрдпрд╛рдп 2 Polynomials
Exercise 2.1 | Q 16 | рдкреГрд╖реНрда рейрел

рд╡реАрдбрд┐рдпреЛ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [2]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди

If a and are the zeros of the quadratic polynomial f(x) = ЁЭСе2 тИТ ЁЭСе тИТ 4, find the value of 1╬▒+1╬▓-╬▒╬▓


If ╬▒ and ╬▓ are the zeros of the quadratic polynomial p(y) = 5y2 тИТ 7y + 1, find the value of 1╬▒+1╬▓


If If ╬▒ and ╬▓ are the zeros of the quadratic polynomial f(x) = x2 тАУ 2x + 3, find a polynomial whose roots are ╬▒-1╬▒+1 , ╬▓-1╬▓+1


Case Study -1

The figure given alongside shows the path of a diver, when she takes a jump from the diving board. Clearly it is a parabola.

Annie was standing on a diving board, 48 feet above the water level. She took a dive into the pool. Her height (in feet) above the water level at any time тАШtтАЩ in seconds is given by the polynomial h(t) such that h(t) = -16t2 + 8t + k.

The zeroes of the polynomial r(t) = -12t2 + (k - 3)t + 48 are negative of each other. Then k is ______.


If two of the zeroes of a cubic polynomial are zero, then it does not have linear and constant terms.


Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:

t3 тАУ 2t2 тАУ 15t


If one of the zeroes of a quadratic polynomial of the form x2 + ax + b is the negative of the other, then it ______.


If one zero of the polynomial p(x) = 6x2 + 37x тАУ (k тАУ 2) is reciprocal of the other, then find the value of k.


A quadratic polynomial the sum and product of whose zeroes are тАУ 3 and 2 respectively, is ______.


Find the zeroes of the polynomial x2 + 4x тАУ 12.


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app├Ч
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.