Advertisements
Advertisements
प्रश्न
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
t3 – 2t2 – 15t
उत्तर
t3 – 2t2 – 15t
Taking t common, we get,
t(t2 – 2t – 15)
Splitting the middle term of the equation t2 – 2t – 15, we get,
t(t2 – 5t + 3t – 15)
Taking the common factors out, we get,
t(t(t – 5) + 3(t – 5)
On grouping, we get,
t(t + 3)(t – 5)
So, the zeroes are,
t = 0
t + 3 = 0
`\implies` t = – 3
t – 5 = 0
`\implies` t = 5
Therefore, zeroes are 0, 5 and – 3
Verification:
Sum of the zeroes = – (coefficient of x2) ÷ coefficient of x3
α + β + γ = `- b/a`
(0) + (– 3) + (5) = `- (-2)/1`
= 2
Sum of the products of two zeroes at a time = coefficient of x ÷ coefficient of x3
αβ + βγ + αγ = `c/a`
(0)(– 3) + (– 3)(5) + (0)(5) = `-15/1`
= – 15
Product of all the zeroes = – (constant term) ÷ coefficient of x3
αβγ = `- d/a`
(0)(– 3)(5) = 0
= 0
APPEARS IN
संबंधित प्रश्न
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients.
6x2 – 3 – 7x
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients:
t2 – 15
Find a quadratic polynomial with the given numbers as the sum and product of its zeroes, respectively.
`sqrt2 , 1/3`
If α and β are the zeroes of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/(aalpha+b)+1/(abeta+b)`.
Verify that 3, -2, 1 are the zeros of the cubic polynomial `p(x) = (x^3 – 2x2 – 5x + 6)` and verify the relation between it zeros and coefficients.
Find all the zeroes of `(x^4 + x^3 – 23x^2 – 3x + 60)`, if it is given that two of its zeroes are `sqrt3 and –sqrt3`.
If 2 and `1/2` are the zeros of px2 + 5x + r, then ______.
The below picture are few natural examples of parabolic shape which is represented by a quadratic polynomial. A parabolic arch is an arch in the shape of a parabola. In structures, their curve represents an efficient method of load, and so can be found in bridges and in architecture in a variety of forms.
If the sum of the roots is –p and the product of the roots is `-1/"p"`, then the quadratic polynomial is:
An asana is a body posture, originally and still a general term for a sitting meditation pose, and later extended in hatha yoga and modern yoga as exercise, to any type of pose or position, adding reclining, standing, inverted, twisting, and balancing poses. In the figure, one can observe that poses can be related to representation of quadratic polynomial.
The zeroes of the quadratic polynomial `4sqrt3"x"^2 + 5"x" - 2sqrt3` are:
A quadratic polynomial, whose zeroes are –3 and 4, is ______.