हिंदी

Verify that 3, -2, 1 Are the Zeros of the Cubic Polynomial `P(X) = (X^3 – 2x2 – 5x + 6)` and Verify the Relation Between It Zeros and Coefficients. - Mathematics

Advertisements
Advertisements

प्रश्न

Verify that 3, -2, 1 are the zeros of the cubic polynomial `p(x) = (x^3 – 2x2 – 5x + 6)` and verify the relation between it zeros and coefficients. 

 

उत्तर

The given polynomial is `p(x) = (x^3 – 2x^2 – 5x + 6)`
`∴ p(3) = (3^3 – 2 × 3^2 – 5 × 3 + 6) = (27 – 18 – 15 + 6) = 0`
`p(-2) = [ (– 2^3) – 2 × (– 2)^2 – 5 × (– 2) + 6] = (–8 –8 + 10 + 6) = 0`
`p(1) = (1^3 – 2 × 1^2 – 5 × 1 + 6) = ( 1 – 2 – 5 + 6) = 0` 

∴ 3, –2 and 1are the zeroes of p(x),
Let 𝛼 = 3, 𝛽 = –2 and γ = 1. Then we have: 

(𝛼 + 𝛽 + γ) = (3 – 2 + 1) = 2 = `(-("Coefficient of" x^2))/(("Coefficient of" x^2))` 

(𝛼𝛽 + 𝛽γ + γ𝛼) = (–6 –2 + 3) = `−5/1 = ("Coefficient of x")/("Coefficient of x"^2)` 

𝛼𝛽γ = { 3 × (-2) × 1}=`(-6)/1= -(("Constant term"))/(("Coefficient of"  x^3))` 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Polynomials - Exercises 2

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 2 Polynomials
Exercises 2 | Q 1

वीडियो ट्यूटोरियलVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×