Advertisements
Advertisements
प्रश्न
Verify that 3, -2, 1 are the zeros of the cubic polynomial `p(x) = (x^3 – 2x2 – 5x + 6)` and verify the relation between it zeros and coefficients.
उत्तर
The given polynomial is `p(x) = (x^3 – 2x^2 – 5x + 6)`
`∴ p(3) = (3^3 – 2 × 3^2 – 5 × 3 + 6) = (27 – 18 – 15 + 6) = 0`
`p(-2) = [ (– 2^3) – 2 × (– 2)^2 – 5 × (– 2) + 6] = (–8 –8 + 10 + 6) = 0`
`p(1) = (1^3 – 2 × 1^2 – 5 × 1 + 6) = ( 1 – 2 – 5 + 6) = 0`
∴ 3, –2 and 1are the zeroes of p(x),
Let 𝛼 = 3, 𝛽 = –2 and γ = 1. Then we have:
(𝛼 + 𝛽 + γ) = (3 – 2 + 1) = 2 = `(-("Coefficient of" x^2))/(("Coefficient of" x^2))`
(𝛼𝛽 + 𝛽γ + γ𝛼) = (–6 –2 + 3) = `−5/1 = ("Coefficient of x")/("Coefficient of x"^2)`
𝛼𝛽γ = { 3 × (-2) × 1}=`(-6)/1= -(("Constant term"))/(("Coefficient of" x^3))`
APPEARS IN
संबंधित प्रश्न
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate α2β + αβ2
If α and β are the zeroes of the polynomial f(x) = x2 + px + q, form a polynomial whose zeroes are (α + β)2 and (α − β)2.
Verify that 5, -2 and 13 are the zeroes of the cubic polynomial `p(x) = (3x^3 – 10x^2 – 27x + 10)` and verify the relation between its zeroes and coefficients.
If 3 and –3 are two zeroes of the polynomial `(x^4 + x^3 – 11x^2 – 9x + 18)`, find all the zeroes of the given polynomial.
If x + 2 is a factor of x2 + ax + 2b and a + b = 4, then
For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.
`(-8)/3, 4/3`
For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.
`21/8, 5/16`
A quadratic polynomial the sum and product of whose zeroes are – 3 and 2 respectively, is ______.
The zeroes of the polynomial p(x) = 25x2 – 49 are ______.
If α, β are zeroes of quadratic polynomial 5x2 + 5x + 1, find the value of α2 + β2.