हिंदी

If α And β Are the Zeros of a Quadratic Polynomial Such that a + β = 24 and a − β = 8, Find a Quadratic Polynomial Having α And β as Its Zeros. - Mathematics

Advertisements
Advertisements

प्रश्न

If α and β are the zeros of a quadratic polynomial such that α + β = 24 and α − β = 8, find a quadratic polynomial having α and β as its zeros.

उत्तर

Given

α + β = 24         ..............(i)

α − β = 8           ..............(ii)

By subtracting equation (ii) from (i) we get

α + β = 24

α − β = 8

--------------

2α = 32

`alpha=32/2`

α = 16

Substituting α = 16 in equation (i) we get,

α + β = 24

16 + β = 24

β = 24 - 16

β = 8

Let S and P denote respectively the sum and product of zeros of the required polynomial. then,

S = α + β

= 16 + 8

= 24

P = αβ

= 16 x 8

= 128

Hence, the required polynomial if f(x) is given by

f(x) = k(x2 - Sx + P)

f(x) = k(x2 -24x + 128)

Hence, required equation is f(x) = k(x2 -24x + 128) where k is any non-zeros real number.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Polynomials - Exercise 2.1 [पृष्ठ ३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 2 Polynomials
Exercise 2.1 | Q 17 | पृष्ठ ३५

वीडियो ट्यूटोरियलVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×