Advertisements
Advertisements
प्रश्न
Given that `sqrt(2)` is a zero of the cubic polynomial `6x^3 + sqrt(2)x^2 - 10x - 4sqrt(2)`, find its other two zeroes.
उत्तर
Given, `sqrt(2)` is one of the zero of the cubic polynomial.
Then, `(x - sqrt(2))` is one of the factor of the given polynomial p(x) = `6x^3 + sqrt(2)x^2 - 10x - 4sqrt(2)`.
So, by dividing p(x) by `x - sqrt(2)`
`6x^2 + 7sqrt(2)x + 4`
`(x - sqrt(2))")"overline(6x^3 + sqrt(2)x^2 - 10x - 4sqrt(2))`
`6x^3 - 6sqrt(2)x^2`
– +
`7sqrt(2)x^2 - 10x - 4sqrt(2)`
`7sqrt(2)x^2 - 14x`
– +
`4x - 4sqrt(2)`
`4x - 4sqrt(2)`
0
`6x^3 + sqrt(2)x^2 - 10x - 4sqrt(2) = (x - sqrt(2)) (6x^2 + 7sqrt(2)x + 4)`
By splitting the middle term,
We get,
`(x - sqrt(2)) (6x^2 + 4sqrt(2)x + 3sqrt(2)x + 4)`
= `(x - sqrt(2)) [2x(3x + 2sqrt(2)) + sqrt(2)(3x + 2sqrt(2))]`
= `(x - sqrt(2)) (2x + sqrt(2)) (3x + 2sqrt(2))`
To get the zeroes of p(x),
Substitute p(x) = 0
`(x - sqrt(2)) (2x + sqrt(2)) (3x + 2sqrt(2))` = 0
`x = sqrt(2) , x = -sqrt(2)/2, x = (-2sqrt(2))/3`
Hence, the other two zeroes of p(x) are `-sqrt(2)/2` and `(-2sqrt(2))/3`.
APPEARS IN
संबंधित प्रश्न
If α and β are the zeros of the quadratic polynomial f(x) = x2 − px + q, prove that `alpha^2/beta^2+beta^2/alpha^2=p^4/q^2-(4p^2)/q+2`
If α and β are the zeros of the quadratic polynomial f(x) = x2 − 1, find a quadratic polynomial whose zeroes are `(2alpha)/beta" and "(2beta)/alpha`
If α and β are the zeros of the quadratic polynomial f(x) = x2 − 3x − 2, find a quadratic polynomial whose zeroes are `1/(2alpha+beta)+1/(2beta+alpha)`
If the zeros of the polynomial f(x) = ax3 + 3bx2 + 3cx + d are in A.P., prove that 2b3 − 3abc + a2d = 0.
If `x =2/3` and x = -3 are the roots of the quadratic equation `ax^2+2ax+5x ` then find the value of a and b.
The product of the zeros of x3 + 4x2 + x − 6 is
If p(x) = axr + bx + c, then –`"b"/"a"` is equal to ______.
If two of the zeroes of a cubic polynomial are zero, then it does not have linear and constant terms.
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`4x^2 + 5sqrt(2)x - 3`
If α, β are the zeroes of the polynomial p(x) = 4x2 – 3x – 7, then `(1/α + 1/β)` is equal to ______.