Advertisements
Advertisements
प्रश्न
If α and β are the zeros of the quadratic polynomial f(x) = x2 − p (x + 1) — c, show that (α + 1)(β +1) = 1− c.
उत्तर
Since α and β are the zeros of the quadratic polynomial f(x) = x2 − p (x + 1) — c
Then
x2 - p(x + 1) - c
x2 - px - p - c
`alpha+beta="-coefficient of x"/("coefficient of "x^2)`
`=(-(-p))/1`
= p
`alphabeta="constant term"/("coefficient of "x^2)`
`=(-p-c)/1`
= -p-c
We have to prove that (α + 1)(β +1) = 1 − c
(α + 1)(β +1) = 1 - c
(α + 1)β + (α +1)(1) = 1 - c
αβ + β + α + 1 = 1 - c
αβ + (α + β) + 1 = 1 - c
Substituting α + β = p and αβ = -p-c we get,
-p - c + p + 1 = 1 - c
1 - c = 1 - c
Hence, it is shown that (α + 1)(β +1) = 1 - c
APPEARS IN
संबंधित प्रश्न
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients.
6x2 – 3 – 7x
Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients
`p(x) = x^2 + 2sqrt2x + 6`
If If α and β are the zeros of the quadratic polynomial f(x) = x2 – 2x + 3, find a polynomial whose roots are `(alpha-1)/(alpha+1)` , `(beta-1)/(beta+1)`
Find the zeroes of the quadratic polynomial `(3x^2 ˗ x ˗ 4)` and verify the relation between the zeroes and the coefficients.
Find a cubic polynomial whose zeroes are `1/2, 1 and -3.`
If 2 and -2 are two zeroes of the polynomial `(x^4 + x^3 – 34x^2 – 4x + 120)`, find all the zeroes of the given polynomial.
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`2x^2 + (7/2)x + 3/4`
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`v^2 + 4sqrt(3)v - 15`
Find the zeroes of the polynomial x2 + 4x – 12.
If α, β are zeroes of quadratic polynomial 5x2 + 5x + 1, find the value of α2 + β2.