Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If If α and β are the zeros of the quadratic polynomial f(x) = x2 – 2x + 3, find a polynomial whose roots are α + 2, β + 2.
рдЙрддреНрддрд░
Since α and β are the zeros of the quadratic polynomial f(x) = x2 – 2x + 3
`alpha+beta="-coefficient of x"/("coefficient of "x^2)`
`=(-(-2))/1`
= 2
Product of the zeroes `="constant term"/("coefficient of "x^2)`
`=3/1`
= 3
Let S and P denote respectively the sums and product of the polynomial whose zeros
α + 2, β + 2
S = (α + 2) + (β + 2)
S = α + β + 2 + 2
S = 2 + 2 + 2
S = 6
P = (α + 2)(β + 2)
P = αβ + 2β + 2α + 4
P = αβ + 2(α + β) + 4
P = 3 + 2(2) + 4
P = 3 + 4 + 4
P = 11
Therefore the required polynomial f(x) is given by
f(x) = k(x2 - Sx + P)
f(x) = k(x2 - 6x + 11)
Hence, the required equation is f(x) = k(x2 - 6x + 11)
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `beta/(aalpha+b)+alpha/(abeta+b)`
If f(x) =` x^4 – 3x^2 + 4x + 5` is divided by g(x)= `x^2 – x + 1`
If 1 and –2 are two zeroes of the polynomial `(x^3 – 4x^2 – 7x + 10)`, find its third zero.
If α, β, γ are are the zeros of the polynomial f(x) = x3 − px2 + qx − r, the\[\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha} =\]
If α, β are the zeros of the polynomial f(x) = ax2 + bx + c, then\[\frac{1}{\alpha^2} + \frac{1}{\beta^2} =\]
Zeroes of a polynomial can be determined graphically. No. of zeroes of a polynomial is equal to no. of points where the graph of polynomial ______.
If all the zeroes of a cubic polynomial are negative, then all the coefficients and the constant term of the polynomial have the same sign.
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
4x2 – 3x – 1
The only value of k for which the quadratic polynomial kx2 + x + k has equal zeros is `1/2`
Find the zeroes of the quadratic polynomial 4s2 – 4s + 1 and verify the relationship between the zeroes and the coefficients.