Advertisements
Advertisements
प्रश्न
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `beta/(aalpha+b)+alpha/(abeta+b)`
उत्तर
f(x) = ax2 + bx + c
α + β = `(-b/a)`
αβ = `c/a`
since α + β are the roots (or) zeroes of the given polynomials
then
`beta/(aalpha+b)+alpha/(abeta+b)`
`=(beta(abeta+b)+alpha(aalpha+b))/((aalpha+b)(abeta+b))`
`=(abeta^2+b beta+aalpha^2+balpha)/(a^2alphabeta+abalpha+ab beta+b^2)`
`=(aalpha^2+abeta^2+b beta+balpha)/(a^2xxc/a+ab(alpha+beta)+b^2)`
`=(a(alpha^2+beta^2)+b(alpha+beta))/(ac+ab(-b/a)+b^2)`
`=(a[(alpha+beta)^2-2alphabeta]+bxx-b/a)/(ac-b^2+b^2)`
`=(a[(-b/a)^2-2(c/a)]-b^2/a)/(ac)`
`=((b^2)/a-(2c)-b^2/a)/(ac)`
`=(-2c)/(ac)`
`=(-2)/a`
APPEARS IN
संबंधित प्रश्न
Find a quadratic polynomial with the given numbers as the sum and product of its zeroes respectively.
1, 1
If the zeroes of the polynomial x3 – 3x2 + x + 1 are a – b, a, a + b, find a and b
Find all zeroes of the polynomial `(2x^4 - 9x^3 + 5x^2 + 3x - 1)` if two of its zeroes are `(2 + sqrt3)` and `(2 - sqrt3)`
If α and β are the zeros of the quadratic polynomial p(s) = 3s2 − 6s + 4, find the value of `alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta`
If the squared difference of the zeros of the quadratic polynomial f(x) = x2 + px + 45 is equal to 144, find the value of p.
If α and β are the zeros of a quadratic polynomial such that α + β = 24 and α − β = 8, find a quadratic polynomial having α and β as its zeros.
Find the zeroes of the quadratic polynomial `4x^2 - 4x + 1` and verify the relation between the zeroes and the coefficients.
Given that one of the zeroes of the cubic polynomial ax3 + bx2 + cx + d is zero, the product of the other two zeroes is ______.
If the zeroes of a quadratic polynomial ax2 + bx + c are both positive, then a, b and c all have the same sign.
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`7y^2 - 11/3 y - 2/3`