Advertisements
Advertisements
Question
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `beta/(aalpha+b)+alpha/(abeta+b)`
Solution
f(x) = ax2 + bx + c
α + β = `(-b/a)`
αβ = `c/a`
since α + β are the roots (or) zeroes of the given polynomials
then
`beta/(aalpha+b)+alpha/(abeta+b)`
`=(beta(abeta+b)+alpha(aalpha+b))/((aalpha+b)(abeta+b))`
`=(abeta^2+b beta+aalpha^2+balpha)/(a^2alphabeta+abalpha+ab beta+b^2)`
`=(aalpha^2+abeta^2+b beta+balpha)/(a^2xxc/a+ab(alpha+beta)+b^2)`
`=(a(alpha^2+beta^2)+b(alpha+beta))/(ac+ab(-b/a)+b^2)`
`=(a[(alpha+beta)^2-2alphabeta]+bxx-b/a)/(ac-b^2+b^2)`
`=(a[(-b/a)^2-2(c/a)]-b^2/a)/(ac)`
`=((b^2)/a-(2c)-b^2/a)/(ac)`
`=(-2c)/(ac)`
`=(-2)/a`
APPEARS IN
RELATED QUESTIONS
if α and β are the zeros of ax2 + bx + c, a ≠ 0 then verify the relation between zeros and its cofficients
Find the condition that the zeros of the polynomial f(x) = x3 + 3px2 + 3qx + r may be in A.P.
If the zeros of the polynomial f(x) = ax3 + 3bx2 + 3cx + d are in A.P., prove that 2b3 − 3abc + a2d = 0.
Find the zeroes of the quadratic polynomial f(x) = 4x2 - 4x - 3 and verify the relation between its zeroes and coefficients.
Find the zeroes of the quadratic polynomial `(3x^2 ˗ x ˗ 4)` and verify the relation between the zeroes and the coefficients.
If `x =2/3` and x = -3 are the roots of the quadratic equation `ax^2+2ax+5x ` then find the value of a and b.
On dividing `3x^3 + x^2 + 2x + 5` is divided by a polynomial g(x), the quotient and remainder are (3x – 5) and (9x + 10) respectively. Find g(x).
If 𝛼, 𝛽 are the zeroes of the polynomial `f(x) = 5x^2 -7x + 1` then `1/∝+1/β=?`
The below picture are few natural examples of parabolic shape which is represented by a quadratic polynomial. A parabolic arch is an arch in the shape of a parabola. In structures, their curve represents an efficient method of load, and so can be found in bridges and in architecture in a variety of forms.
If the sum of the roots is –p and the product of the roots is `-1/"p"`, then the quadratic polynomial is:
A quadratic polynomial the sum and product of whose zeroes are – 3 and 2 respectively, is ______.