English

Find the Condition that the Zeros of the Polynomial F(X) = X3 + 3px2 + 3qx + R May Be in A.P. - Mathematics

Advertisements
Advertisements

Question

Find the condition that the zeros of the polynomial f(x) = x3 + 3px2 + 3qx + r may be in A.P.

Solution

Let a - d, a and a + d be the zeros of the polynomial f(x). Then,

Sum of the zeroes `=("coefficient of "x^2)/("coefficient of "x^3)`

`a-d+a+a+d=(-3p)/1`

`3a=-3p`

`a=(-3xxp)/3`

a = -p

Since 'a' is a zero of the polynomial f(x). Therefore,

f(x) = x3 + 3px2 + 3qx + r

f(a) = 0

f(a) = a3 + 3pa2 + 3qa + r

a3 + 3pa2 + 3qa + r = 0

Substituting a = -p we get,

(-p)3 + 3p(-p)2 + 3q(-p) + r = 0

-p3 + 3p3 - 3pq + r = 0

2p3 - 3pq + r = 0

Hence, the condition for the given polynomial is 2p3 - 3pq + r = 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Polynomials - Exercise 2.2 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 2 Polynomials
Exercise 2.2 | Q 4 | Page 43
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×