Advertisements
Advertisements
Question
Find the condition that the zeros of the polynomial f(x) = x3 + 3px2 + 3qx + r may be in A.P.
Solution
Let a - d, a and a + d be the zeros of the polynomial f(x). Then,
Sum of the zeroes `=("coefficient of "x^2)/("coefficient of "x^3)`
`a-d+a+a+d=(-3p)/1`
`3a=-3p`
`a=(-3xxp)/3`
a = -p
Since 'a' is a zero of the polynomial f(x). Therefore,
f(x) = x3 + 3px2 + 3qx + r
f(a) = 0
f(a) = a3 + 3pa2 + 3qa + r
a3 + 3pa2 + 3qa + r = 0
Substituting a = -p we get,
(-p)3 + 3p(-p)2 + 3q(-p) + r = 0
-p3 + 3p3 - 3pq + r = 0
2p3 - 3pq + r = 0
Hence, the condition for the given polynomial is 2p3 - 3pq + r = 0
APPEARS IN
RELATED QUESTIONS
Prove relation between the zeros and the coefficient of the quadratic polynomial ax2 + bx + c
Find a quadratic polynomial with the given numbers as the sum and product of its zeroes respectively.
4, 1
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate α - β
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/alpha-1/beta`
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate α2β + αβ2
Find the zeroes of the quadratic polynomial `4x^2 - 4x + 1` and verify the relation between the zeroes and the coefficients.
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
t3 – 2t2 – 15t
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`2s^2 - (1 + 2sqrt(2))s + sqrt(2)`
If one zero of the polynomial p(x) = 6x2 + 37x – (k – 2) is reciprocal of the other, then find the value of k.
If α, β are zeroes of quadratic polynomial 5x2 + 5x + 1, find the value of α2 + β2.