Advertisements
Advertisements
प्रश्न
Find the condition that the zeros of the polynomial f(x) = x3 + 3px2 + 3qx + r may be in A.P.
उत्तर
Let a - d, a and a + d be the zeros of the polynomial f(x). Then,
Sum of the zeroes `=("coefficient of "x^2)/("coefficient of "x^3)`
`a-d+a+a+d=(-3p)/1`
`3a=-3p`
`a=(-3xxp)/3`
a = -p
Since 'a' is a zero of the polynomial f(x). Therefore,
f(x) = x3 + 3px2 + 3qx + r
f(a) = 0
f(a) = a3 + 3pa2 + 3qa + r
a3 + 3pa2 + 3qa + r = 0
Substituting a = -p we get,
(-p)3 + 3p(-p)2 + 3q(-p) + r = 0
-p3 + 3p3 - 3pq + r = 0
2p3 - 3pq + r = 0
Hence, the condition for the given polynomial is 2p3 - 3pq + r = 0
APPEARS IN
संबंधित प्रश्न
if α and β are the zeros of ax2 + bx + c, a ≠ 0 then verify the relation between zeros and its cofficients
Find a quadratic polynomial with the given numbers as the sum and product of its zeroes respectively.
`0, sqrt5`
Find a quadratic polynomial with the given numbers as the sum and product of its zeroes respectively.
4, 1
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate :
`a(α^2/β+β^2/α)+b(α/β+β/α)`
Find the quadratic polynomial, sum of whose zeroes is `( 5/2 )` and their product is 1. Hence, find the zeroes of the polynomial.
If α, β, γ are the zeros of the polynomial f(x) = ax3 + bx2 + cx + d, the\[\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} =\]
Case Study -1
The figure given alongside shows the path of a diver, when she takes a jump from the diving board. Clearly it is a parabola.
Annie was standing on a diving board, 48 feet above the water level. She took a dive into the pool. Her height (in feet) above the water level at any time ‘t’ in seconds is given by the polynomial h(t) such that h(t) = -16t2 + 8t + k.
The zeroes of the polynomial r(t) = -12t2 + (k - 3)t + 48 are negative of each other. Then k is ______.
If two of the zeroes of a cubic polynomial are zero, then it does not have linear and constant terms.
For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.
`-2sqrt(3), -9`
Find the zeroes of the quadratic polynomial 6x2 – 3 – 7x and verify the relationship between the zeroes and the coefficients.