Advertisements
Advertisements
Question
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`2s^2 - (1 + 2sqrt(2))s + sqrt(2)`
Solution
Let p(s) = `2s^2 - (1 + 2sqrt(2))s + sqrt(2)`
= `2s^2 - s - 2sqrt(2)s + sqrt(2)`
= `2s - 1 (s - sqrt(2))`
So, the zeroes of p(s) are `1/2` and `sqrt(2)`
∴ Sum of zeroes = `1/2 + sqrt(2)`
= `(1 + 2sqrt(2))/2`
= `(-[-(1 + 2sqrt(2))])/2`
= `(-("coefficient of" s))/("coefficient of" s^2)`
And product of zeroes = `1/2 . sqrt(2)`
= `"constant term"/("coefficient of" s^2)`
APPEARS IN
RELATED QUESTIONS
Find the zeros of the quadratic polynomial 4x2 - 9 and verify the relation between the zeros and its coffiecents.
if α and β are the zeros of ax2 + bx + c, a ≠ 0 then verify the relation between zeros and its cofficients
Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients
`g(x)=a(x^2+1)-x(a^2+1)`
If α and β are the zeros of the quadratic polynomial p(s) = 3s2 − 6s + 4, find the value of `alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta`
If 𝛼, 𝛽 are the zeroes of the polynomial f(x) = x2 + x – 2, then `(∝/β-∝/β)`
If one of the zeroes of the cubic polynomial x3 + ax2 + bx + c is –1, then the product of the other two zeroes is ______.
For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.
`21/8, 5/16`
If the zeroes of the polynomial x2 + px + q are double in value to the zeroes of the polynomial 2x2 – 5x – 3, then find the values of p and q.
If α, β are zeroes of quadratic polynomial 5x2 + 5x + 1, find the value of α2 + β2.
If α, β are zeroes of quadratic polynomial 5x2 + 5x + 1, find the value of α–1 + β–1.