Advertisements
Advertisements
Question
If α and β are the zeros of the quadratic polynomial p(s) = 3s2 − 6s + 4, find the value of `alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta`
Solution
Since α and β are the zeros of the quadratic polynomial p(s) = 3s2 − 6s + 4
`alpha+beta="-coefficient of x"/("coefficient of "x^2)`
`alpha+beta=(-(-6))/3`
`alpha+beta=6/3`
`alpha+beta=2`
`alphabeta="constant term"/("coefficient of "x^2)`
`alphabeta=4/3`
We have, `alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta`
`=(alpha^2+beta^2)/(alphabeta)+2[1/alpha+1/beta+3alphabeta]`
`=((alpha+beta)^2-2alphabeta)/(alphabeta)+2[(alpha+beta)/(alphabeta)]+3alphabeta`
By substituting `alpha+beta=2 " and "alphabeta=4/3` we get,
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=((2)^2-2(4/3))/(4/3)+2((2))/(4/3)+3(4/3)`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=(4-8/3)/(4/3)+4/(4/3)+12/3`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=((4xx3)/(1xx3)-8/3)/(4/3)+4/(4/3)+12/3`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=((12-8)/3)/(4/3)+4/(4/3)+12/3`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=(4/3)/(4/3)+4/(4/3)+12/3`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=4/3xx3/4+(4xx3)/4+12/3`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=1+12/4+12/3`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=(1xx12)/(1xx12)+(12xx3)/(4xx3)+(12xx4)/(3xx4)`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=(12+36+48)/12`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=(48+48)/12`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=96/12`
`alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta=8`
Hence, the value of `alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta " is "8`
APPEARS IN
RELATED QUESTIONS
Find a quadratic polynomial with the given numbers as the sum and product of its zeroes, respectively.
`sqrt2 , 1/3`
If a and 3 are the zeros of the quadratic polynomial f(x) = x2 + x − 2, find the value of `1/alpha-1/beta`.
If the zeros of the polynomial f(x) = x3 − 12x2 + 39x + k are in A.P., find the value of k.
Find the zeroes of the quadratic polynomial `(3x^2 ˗ x ˗ 4)` and verify the relation between the zeroes and the coefficients.
Find the quadratic polynomial, sum of whose zeroes is `( 5/2 )` and their product is 1. Hence, find the zeroes of the polynomial.
The product of the zeros of x3 + 4x2 + x − 6 is
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
3x2 + 4x – 4
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
t3 – 2t2 – 15t
The only value of k for which the quadratic polynomial kx2 + x + k has equal zeros is `1/2`
If α, β are zeroes of quadratic polynomial 5x2 + 5x + 1, find the value of α2 + β2.