Advertisements
Advertisements
Question
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
3x2 + 4x – 4
Solution
3x2 + 4x – 4
Splitting the middle term, we get,
3x2 + 6x – 2x – 4
Taking the common factors out, we get,
3x(x + 2) – 2(x + 2)
On grouping, we get,
(x + 2)(3x – 2)
So, the zeroes are,
x + 2 = 0
`\implies` x = – 2
3x – 2 = 0
`\implies` 3x = 2
`\implies` x = `2/3`
Therefore, zeroes are `(2/3)` and – 2
Verification:
Sum of the zeroes = – (coefficient of x) ÷ coefficient of x2
α + β = `– b/a`
`-2 + (2/3) = - (4)/3`
= `- 4/3 = -4/3`
Product of the zeroes = constant term ÷ coefficient of x2
αβ = `c/a`
Product of the zeroes = `(-2) (2/3) = - 4/3`
APPEARS IN
RELATED QUESTIONS
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients.
4u2 + 8u
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/alpha+1/beta-2alphabeta`
If a and 3 are the zeros of the quadratic polynomial f(x) = x2 + x − 2, find the value of `1/alpha-1/beta`.
If α and β are the zeros of a quadratic polynomial such that α + β = 24 and α − β = 8, find a quadratic polynomial having α and β as its zeros.
If If α and β are the zeros of the quadratic polynomial f(x) = x2 – 2x + 3, find a polynomial whose roots are `(alpha-1)/(alpha+1)` , `(beta-1)/(beta+1)`
Find the zeroes of the quadratic polynomial` (x^2 ˗ 5)` and verify the relation between the zeroes and the coefficients.
Find the quadratic polynomial whose zeroes are `2/3` and `-1/4`. Verify the relation between the coefficients and the zeroes of the polynomial.
Can the quadratic polynomial x2 + kx + k have equal zeroes for some odd integer k > 1?
The zeroes of the quadratic polynomial x2 + 99x + 127 are ______.
The zeroes of the polynomial p(x) = 25x2 – 49 are ______.