Advertisements
Advertisements
Question
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
4x2 – 3x – 1
Solution
4x2 – 3x – 1
Splitting the middle term, we get,
4x2 – 4x + 1x – 1
Taking the common factors out, we get,
4x(x – 1) + 1(x – 1)
On grouping, we get,
(4x + 1)(x – 1)
So, the zeroes are,
4x + 1 = 0
`\implies` 4x = – 1
`\implies` x = `(-1/4)`
(x – 1) = 0
`\implies` x = 1
Therefore, zeroes are `(-1/4)` and 1
Verification:
Sum of the zeroes = – (coefficient of x) ÷ coefficient of x2
α + β = `– b/a`
`1 - 1/4 = - (- 3)/4 = 3/4`
Product of the zeroes = constant term ÷ coefficient of x2
αβ = `c/a`
`1(-1/4) = - 1/4`
`-1/4 = -1/4`
APPEARS IN
RELATED QUESTIONS
If two zeroes of the polynomial x4 – 6x3 – 26x2 + 138x – 35 are 2 ± `sqrt3` , find other zeroes
Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients
`f(x)=x^2-(sqrt3+1)x+sqrt3`
If 𝛼 and 𝛽 are the zeros of the quadratic polynomial f(x) = x2 − 5x + 4, find the value of `1/alpha+1/beta-2alphabeta`
If α and β are the zeros of the quadratic polynomial p(s) = 3s2 − 6s + 4, find the value of `alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta`
The product of the zeros of x3 + 4x2 + x − 6 is
Check whether g(x) is a factor of p(x) by dividing polynomial p(x) by polynomial g(x),
where p(x) = x5 − 4x3 + x2 + 3x +1, g(x) = x3 − 3x + 1
Case Study -1
The figure given alongside shows the path of a diver, when she takes a jump from the diving board. Clearly it is a parabola.
Annie was standing on a diving board, 48 feet above the water level. She took a dive into the pool. Her height (in feet) above the water level at any time ‘t’ in seconds is given by the polynomial h(t) such that h(t) = -16t2 + 8t + k.
The zeroes of the polynomial r(t) = -12t2 + (k - 3)t + 48 are negative of each other. Then k is ______.
For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.
`(-3)/(2sqrt(5)), -1/2`
Find the sum and product of the roots of the quadratic equation 2x2 – 9x + 4 = 0.
Find the zeroes of the quadratic polynomial x2 + 6x + 8 and verify the relationship between the zeroes and the coefficients.