Advertisements
Advertisements
Question
For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.
`(-3)/(2sqrt(5)), -1/2`
Solution
Sum of the zeroes = `-3/2 sqrt(5)x`
Product of the zeroes = `- 1/2`
P(x) = x2 – (Sum of the zeroes) + (Product of the zeroes)
Then, P(x) = `x^2 - (-3/2 sqrt(5)x) - 1/2`
P(x) = `2sqrt(5)x^2 + 3x - sqrt(5)`
Using splitting the middle term method,
`2sqrt(5)x^2 + 3x - sqrt(5)` = 0
`2sqrt(5)x^2 + (5x - 2x) - sqrt(5)` = 0
`2sqrt(5)x^2 - 5x + 2x - sqrt(5)` = 0
`sqrt(5)x (2x + sqrt(5)) - (2x + sqrt(5))` = 0
`(2x + sqrt(5))(sqrt(5)x - 1)` = 0
`\implies` x = `1/sqrt(5), -sqrt(5)/2`
APPEARS IN
RELATED QUESTIONS
Find the zeros of the quadratic polynomial 6x2 - 13x + 6 and verify the relation between the zero and its coefficients.
Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
`1/4 , -1`
Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients
`q(x)=sqrt3x^2+10x+7sqrt3`
If one zero of the quadratic polynomial f(x) = 4x2 − 8kx − 9 is negative of the other, find the value of k.
If 2 and -2 are two zeroes of the polynomial `(x^4 + x^3 – 34x^2 – 4x + 120)`, find all the zeroes of the given polynomial.
Find all the zeroes of `(x^4 + x^3 – 23x^2 – 3x + 60)`, if it is given that two of its zeroes are `sqrt3 and –sqrt3`.
Define a polynomial with real coefficients.
Check whether g(x) is a factor of p(x) by dividing polynomial p(x) by polynomial g(x),
where p(x) = x5 − 4x3 + x2 + 3x +1, g(x) = x3 − 3x + 1
The only value of k for which the quadratic polynomial kx2 + x + k has equal zeros is `1/2`
Find the zeroes of the quadratic polynomial 6x2 – 3 – 7x and verify the relationship between the zeroes and the coefficients.