Advertisements
Advertisements
Question
For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.
`-2sqrt(3), -9`
Solution
Sum of the zeroes = `- 2sqrt(3)`
Product of the zeroes = – 9
P(x) = x2 – (Sum of the zeroes) + (Product of the zeroes)
Then, P(x) = `x^2 - (-2sqrt(3)x) - 9`
Using splitting the middle term method,
`x^2 + 2sqrt(3)x - 9` = 0
`x^2 + (3sqrt(3)x - sqrt(3)x) - 9` = 0
`x(x + 3sqrt(3)) - sqrt(3)(x + 3sqrt(3))` = 0
`(x - sqrt(3))(x + 3sqrt(3))` = 0
`\implies` x = `sqrt(3), -3sqrt(3)`
APPEARS IN
RELATED QUESTIONS
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients:
x2 – 2x – 8
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients.
4u2 + 8u
Find a quadratic polynomial with the given numbers as the sum and product of its zeroes respectively.
1, 1
Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case
x3 – 4x2 + 5x – 2; 2, 1, 1
If 𝛼 and 𝛽 are the zeros of the quadratic polynomial f(x) = x2 − 5x + 4, find the value of `1/alpha+1/beta-2alphabeta`
If α and β are the zeros of the quadratic polynomial f(x) = x2 − p (x + 1) — c, show that (α + 1)(β +1) = 1− c.
Verify that 5, -2 and 13 are the zeroes of the cubic polynomial `p(x) = (3x^3 – 10x^2 – 27x + 10)` and verify the relation between its zeroes and coefficients.
The product of the zeros of x3 + 4x2 + x − 6 is
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`2x^2 + (7/2)x + 3/4`
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`v^2 + 4sqrt(3)v - 15`