Advertisements
Advertisements
Question
Verify that 5, -2 and 13 are the zeroes of the cubic polynomial `p(x) = (3x^3 – 10x^2 – 27x + 10)` and verify the relation between its zeroes and coefficients.
Solution
p(x) = `(3x^3 – 10x^2 – 27x + 10)`
`p(5) = (3 × 5^3 – 10 × 5^2 – 27 × 5 + 10) = (375 – 250 – 135 + 10) = 0`
`p(–2) = [3 × (–2^3) – 10 × (–2^2) – 27 × (–2) + 10] = (–24 – 40 + 54 + 10) = 0 `
`p(1/3)={3xx(1/3)^3-10(1/3)^2-27xx1/3+10}=(3xx1/27-10xx1/9-9+10)`
`=(1/9-10/9+1)=((1-10-9)/9)=(0/9)=0`
∴` 5, –2 and 1/3` are the zeroes of p(x).
Let 𝛼 = 5, 𝛽 = –2 and γ = `1/3`. Then we have:
(𝛼 + 𝛽 + γ) =`(5-2+1/3)=10/3=(-("Coefficient of "x^2))/(("Coefficient of" x^3))`
(𝛼𝛽 + 𝛽γ + γ𝛼)=`(10-2/3+5/3)(-27)/3=("Coefficient of" x)/("Coefficient of"" x^3)`
𝛼𝛽γ` ={5xx(-2)xx1/3}=-10/3=-("Constant term")/(("Coefficient of "x^3))`
APPEARS IN
RELATED QUESTIONS
If α and β are the zeroes of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/(aalpha+b)+1/(abeta+b)`.
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `beta/(aalpha+b)+alpha/(abeta+b)`
If α and β are the zeros of the quadratic polynomial f(x) = x2 − p (x + 1) — c, show that (α + 1)(β +1) = 1− c.
If 3 and –3 are two zeroes of the polynomial `(x^4 + x^3 – 11x^2 – 9x + 18)`, find all the zeroes of the given polynomial.
If 𝛼, 𝛽 are the zeroes of the polynomial f(x) = x2 + x – 2, then `(∝/β-∝/β)`
A quadratic polynomial, whose zeroes are –3 and 4, is ______.
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`4x^2 + 5sqrt(2)x - 3`
The only value of k for which the quadratic polynomial kx2 + x + k has equal zeros is `1/2`
Find the sum and product of the roots of the quadratic equation 2x2 – 9x + 4 = 0.
Find the zeroes of the quadratic polynomial x2 + 6x + 8 and verify the relationship between the zeroes and the coefficients.