Advertisements
Advertisements
Question
A quadratic polynomial, whose zeroes are –3 and 4, is ______.
Options
`x^2 - x + 12`
`x^2 + x + 12`
`x^2/2 - x/2 - 6`
`2x^2 + 2x - 24`
Solution
A quadratic polynomial, whose zeroes are –3 and 4, is `underlinebb(x^2/2 - x/2 - 6)`.
Explanation:
Sum of zeroes, α + β = –3 + 4 = 1
Product of zeroes, αβ = –3 × 4 = –12
Therefore, the quadratic polynomial becomes,
x2 – (sum of zeroes)x + (product of zeroes)
= x2 – (α + β)x + (αβ)
= x2 – (1)x + (–12)
= x2 – x – 12
Divide by 2, we get
= `x^2/2 - x/2 -12/2`
= `x^2/2 - x/2 - 6`
APPEARS IN
RELATED QUESTIONS
If α and β are the zeros of the quadratic polynomial f(x) = x2 − px + q, prove that `alpha^2/beta^2+beta^2/alpha^2=p^4/q^2-(4p^2)/q+2`
If the zeros of the polynomial f(x) = 2x3 − 15x2 + 37x − 30 are in A.P., find them.
Find the quadratic polynomial, sum of whose zeroes is 8 and their product is 12. Hence, find the zeroes of the polynomial.
If α, β, γ are the zeros of the polynomial f(x) = ax3 + bx2 + cx + d, then α2 + β2 + γ2 =
If two of the zeros of the cubic polynomial ax3 + bx2 + cx + d are each equal to zero, then the third zero is
If one of the zeroes of the cubic polynomial x3 + ax2 + bx + c is –1, then the product of the other two zeroes is ______.
For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.
`21/8, 5/16`
Find the zeroes of the quadratic polynomial x2 + 6x + 8 and verify the relationship between the zeroes and the coefficients.
The zeroes of the polynomial p(x) = 25x2 – 49 are ______.
If α, β are zeroes of quadratic polynomial 5x2 + 5x + 1, find the value of α2 + β2.