Advertisements
Advertisements
Question
If α, β, γ are the zeros of the polynomial f(x) = ax3 + bx2 + cx + d, then α2 + β2 + γ2 =
Options
- \[\frac{b^2 - ac}{a^2}\]
- \[\frac{b^2 - 2ac}{a}\]
- \[\frac{b^2 + 2ac}{b^2}\]
- \[\frac{b^2 - 2ac}{a^2}\]
Solution
We have to find the value of `alpha^2+beta^2+y^2`
Given `alpha,beta,y` be the zeros of the polynomial f(x) = ax3 + bx2 + cx + d,
`alpha + ß + y= - (-text{coefficient of }x^2)/(text{coefficient of } x^3)`
`= (-b)/a`
`alphaß +betay+yalpha= (text{coefficient of x})/(text{coefficient of } x^3)`
`= c/a`
Now
`alpha^2+beta^2+y^2=(alpha+beta+y)^2-2(alphabeta+betay+yalpha)`
`alpha^2+beta^2+y^2=((-6)/a)^2-2(c/a)`
`alpha^2+b^2+y^2= (b^2)/(a^2)-(2c)/a`
`alpha^2+beta^2+y^2=(b^2)/(a^2)- (2cxxa)/(axxa) `
`alpha^2+beta^2+y^2=(b^2)/(a^2)- (2ca)/a^2 `
`alpha^2+beta^2+y^2=(b^2)/(a^2)- (b^2-2ac)/a^2`
The value of `alpha^2+beta^2+y^2=( b^2-2ac)/a^2`
Hence, the correct choice is `(d).`
APPEARS IN
RELATED QUESTIONS
If two zeroes of the polynomial x4 – 6x3 – 26x2 + 138x – 35 are 2 ± `sqrt3` , find other zeroes
If 𝛼 and 𝛽 are the zeros of the quadratic polynomial p(x) = 4x2 − 5x −1, find the value of α2β + αβ2.
If α and β are the zeroes of the polynomial f(x) = x2 + px + q, form a polynomial whose zeroes are (α + β)2 and (α − β)2.
If the zeros of the polynomial f(x) = x3 − 12x2 + 39x + k are in A.P., find the value of k.
An asana is a body posture, originally and still a general term for a sitting meditation pose, and later extended in hatha yoga and modern yoga as exercise, to any type of pose or position, adding reclining, standing, inverted, twisting, and balancing poses. In the figure, one can observe that poses can be related to representation of quadratic polynomial.
The zeroes of the quadratic polynomial `4sqrt3"x"^2 + 5"x" - 2sqrt3` are:
The number of polynomials having zeroes as –2 and 5 is ______.
If two of the zeroes of a cubic polynomial are zero, then it does not have linear and constant terms.
For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.
`21/8, 5/16`
The zeroes of the quadratic polynomial x2 + 99x + 127 are ______.
The zeroes of the polynomial p(x) = 2x2 – x – 3 are ______.