English

If α and β Are the Zeroes of the Polynomial F(X) = X2 + Px + Q, Form a Polynomial Whose Zeroes Are (α + β)2 and (α − β)2. - Mathematics

Advertisements
Advertisements

Question

If α and β are the zeroes of the polynomial f(x) = x2 + px + q, form a polynomial whose zeroes are (α + β)2 and (α − β)2.

Solution

If α and β are the zeros of the quadratic polynomial f(x) = x2 + px + q

`alpha+beta="-coefficient of x"/("coefficient of "x^2)`

`=(-p)/1`

`alphabeta="constant term"/("coefficient of "x^2)`

`=q/1`

= q

Let S and P denote respectively the sums and product of the zeros of the polynomial whose zeros are (α + β)2 and (α − β)2

S = (α + β)2 + (α − β)2

`S=alpha^2+beta^2+2alphabeta+alpha^2+beta^2-2alphabeta`

`S=2[alpha^2+beta^2]`

`S=2[(alpha+beta)^2-2alphabeta]`

`S=2(p^2-2xxq)`

`S=2(p^2-2q)`

 

`P=(alpha+beta)^2(alpha-beta)^2`

`P=(alpha^2+beta^2+2alphabeta)(alpha^2+beta^2-2alphabeta)`

`P=((alpha+beta)^2-2alphabeta+2alphabeta)((alpha+beta)^2-2alphabeta-2alphabeta)`

`P=(p)^2((p)^2-4xxq)`

`P=p^2(p^2-4q)`

The required polynomial of f(x) = k(kx2 - Sx + P) is given by

f(x) = k{x2 - 2(p2 - 2q)x + p2(p2 - 4q)}

 

f(x) = k{x2 - 2(p2 - 2q)x + p2(p2 - 4q)}, where k is any non-zero real number.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Polynomials - Exercise 2.1 [Page 35]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 2 Polynomials
Exercise 2.1 | Q 20 | Page 35
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×