Advertisements
Advertisements
Question
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients:
x2 – 2x – 8
Solution
By factorization method:
x2 - 2x - 8
⇒ x2 - 4x + 2x - 8 = 0
⇒ x(x - 4) + 2(x - 4) = 0
⇒ x(x - 4) + 2(x - 4) = 0
⇒ (x - 4) (x + 2) = 0
⇒ x - 4 = 0, x + 2 = 0
⇒ x = 4, x = -2
For p(x) = 0, we must have (x - 4) (x + 2) = 0 Either x - 4 = 0
x = 4
or x + 2 = 0
x = -2
∴ The zeroes of x2 - 2x - 8 are 4 and -2
Now,
= Sum of the zeroes `="-Coefficient of x"/"Coefficient of x"`
`-2+4=(-(-2))/1`
2 = 2 (L.H.S = R.H.S)
Product of the zeroes `="Constant term"/("Coefficient of "x^2)`
`-2xx4=(-8)/1`
`-8 = -8` (L.H.S = R.H.S)
Thus, the relationship between the zeroes and the coefficients in the polynomial x2 – 2x – 8 is verified.
APPEARS IN
RELATED QUESTIONS
Find the zeros of the quadratic polynomial 4x2 - 9 and verify the relation between the zeros and its coffiecents.
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients:
4s2 – 4s + 1
Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients
`f(x)=x^2-(sqrt3+1)x+sqrt3`
Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients
`g(x)=a(x^2+1)-x(a^2+1)`
If α and β are the zeros of the quadratic polynomial f(x) = 6x2 + x − 2, find the value of `alpha/beta+beta/alpha`.
If α and β are the zeros of the quadratic polynomial f(x) = x2 − px + q, prove that `alpha^2/beta^2+beta^2/alpha^2=p^4/q^2-(4p^2)/q+2`
Find a cubic polynomial whose zeroes are `1/2, 1 and -3.`
Find a cubic polynomial with the sum of its zeroes, sum of the products of its zeroes taken two at a time and the product of its zeroes as 5, -2 and -24 respectively.
If 1 and –2 are two zeroes of the polynomial `(x^3 – 4x^2 – 7x + 10)`, find its third zero.
Find all the zeroes of `(x^4 + x^3 – 23x^2 – 3x + 60)`, if it is given that two of its zeroes are `sqrt3 and –sqrt3`.
If 𝛼, 𝛽 are the zeroes of the polynomial `f(x) = 5x^2 -7x + 1` then `1/∝+1/β=?`
What should be added to the polynomial x2 − 5x + 4, so that 3 is the zero of the resulting polynomial?
If p(x) = axr + bx + c, then –`"b"/"a"` is equal to ______.
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
3x2 + 4x – 4
The zeroes of the quadratic polynomial x2 + 99x + 127 are ______.
If the zeroes of the polynomial x2 + px + q are double in value to the zeroes of the polynomial 2x2 – 5x – 3, then find the values of p and q.
If α, β are zeroes of the quadratic polynomial x2 – 5x + 6, form another quadratic polynomial whose zeroes are `1/α, 1/β`.
Find a quadratic polynomial whose zeroes are 6 and – 3.
The zeroes of the polynomial p(x) = 2x2 – x – 3 are ______.