Advertisements
Advertisements
Question
Find a cubic polynomial whose zeroes are `1/2, 1 and -3.`
Solution
If the zeroes of the cubic polynomial are a, b and c then the cubic polynomial can be found as
`x^3 – (a + b + c)x^2 + (ab + bc + ca)x – abc` .............(1)
Let a = `1/2, b=14 and c=-3`
Substituting the values in (1), we get
`x^3-(1/2+1-3)x^2+(1/2-3-3/2)x-(-3/2)`
⇒ `x^3-(-3/2)x^2-4x+3/2`
`⇒ 2x^3+3x^2-8x+3`
APPEARS IN
RELATED QUESTIONS
Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, − 7, − 14 respectively
If two zeroes of the polynomial x4 – 6x3 – 26x2 + 138x – 35 are 2 ± `sqrt3` , find other zeroes
If α and β are the zeros of the quadratic polynomial f(x) = 6x2 + x − 2, find the value of `alpha/beta+beta/alpha`.
If a and 3 are the zeros of the quadratic polynomial f(x) = x2 + x − 2, find the value of `1/alpha-1/beta`.
If α and β are the zeros of the quadratic polynomial f(x) = x2 − px + q, prove that `alpha^2/beta^2+beta^2/alpha^2=p^4/q^2-(4p^2)/q+2`
Find the zeroes of the quadratic polynomial `4x^2 - 4x + 1` and verify the relation between the zeroes and the coefficients.
Find the zeroes of the quadratic polynomial `(8x^2 ˗ 4)` and verify the relation between the zeroes and the coefficients
Find the zeroes of the quadratic polynomial `(3x^2 ˗ x ˗ 4)` and verify the relation between the zeroes and the coefficients.
Find a cubic polynomial with the sum of its zeroes, sum of the products of its zeroes taken two at a time and the product of its zeroes as 5, -2 and -24 respectively.
The polynomial which when divided by −x2 + x − 1 gives a quotient x − 2 and remainder 3, is