Advertisements
Advertisements
Question
The number of polynomials having zeroes as –2 and 5 is ______.
Options
1
2
3
More than 3
Solution
The number of polynomials having zeroes as –2 and 5 is more than 3.
Explanation:
According to the question,
The zeroes of the polynomials = –2 and 5
We know that the polynomial is of the form,
p(x) = ax2 + bx + c.
Sum of the zeroes = – (Coefficient of x) ÷ Coefficient of x2 i.e.
Sum of the zeroes = – `b/a`
– 2 + 5 = `– b/a`
3 = `– b/a`
b = – 3 and a = 1
Product of the zeroes = Constant term ÷ Coefficient of x2 i.e.
Product of zeroes = `c/a`
(–2)5 = `c/a`
– 10 = c
Substituting the values of a, b and c in the polynomial p(x) = ax2 + bx + c.
We get, x2 – 3x – 10
Therefore, we can conclude that x can take any value.
APPEARS IN
RELATED QUESTIONS
Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, − 7, − 14 respectively
If a and 3 are the zeros of the quadratic polynomial f(x) = x2 + x − 2, find the value of `1/alpha-1/beta`.
If If α and β are the zeros of the quadratic polynomial f(x) = x2 – 2x + 3, find a polynomial whose roots are α + 2, β + 2.
Find the zeroes of the quadratic polynomial `(3x^2 ˗ x ˗ 4)` and verify the relation between the zeroes and the coefficients.
By actual division, show that x2 – 3 is a factor of` 2x^4 + 3x^3 – 2x^2 – 9x – 12.`
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
3x2 + 4x – 4
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`2s^2 - (1 + 2sqrt(2))s + sqrt(2)`
Find the zeroes of the quadratic polynomial 6x2 – 3 – 7x and verify the relationship between the zeroes and the coefficients.
Find the sum and product of the roots of the quadratic equation 2x2 – 9x + 4 = 0.
Find a quadratic polynomial whose zeroes are 6 and – 3.