English

If If 𝛼 and 𝛽 Are the Zeros of the Quadratic Polynomial F(X) = X2 – 2x + 3, Find a Polynomial Whose Roots Are α + 2, β + 2. - Mathematics

Advertisements
Advertisements

Question

If If α and β are the zeros of the quadratic polynomial f(x) = x2 – 2x + 3, find a polynomial whose roots are α + 2, β + 2.

Solution

Since α and β are the zeros of the quadratic polynomial f(x) = x2 – 2x + 3

`alpha+beta="-coefficient of x"/("coefficient of "x^2)`

`=(-(-2))/1`

= 2

Product of the zeroes `="constant term"/("coefficient of "x^2)`

`=3/1`

= 3

Let S and P denote respectively the sums and product of the polynomial whose zeros

α + 2, β + 2

S = (α + 2) + (β + 2)

S = α + β + 2 + 2

S = 2 + 2 + 2

S = 6

P = (α + 2)(β + 2)

P = αβ + 2β + 2α + 4

P = αβ + 2(α + β) + 4

P = 3 + 2(2) + 4

P = 3 + 4 + 4

P = 11

Therefore the required polynomial f(x) is given by

f(x) = k(x2 - Sx + P)

f(x) = k(x2 - 6x + 11)

Hence, the required equation is f(x) = k(x2 - 6x + 11)

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Polynomials - Exercise 2.1 [Page 35]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 2 Polynomials
Exercise 2.1 | Q 19.1 | Page 35
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×