Advertisements
Advertisements
Question
Given that one of the zeroes of the cubic polynomial ax3 + bx2 + cx + d is zero, the product of the other two zeroes is ______.
Options
`- c/a`
`c/a`
0
`- b/a`
Solution
Given that one of the zeroes of the cubic polynomial ax3 + bx2 + cx + d is zero, the product of the other two zeroes is `underlinebb(c/a)`.
Explanation:
According to the question,
We have the polynomial,
ax3 + bx2 + cx + d
We know that,
Sum of product of roots of a cubic equation is given by `c/a`
It is given that one root = 0
Now, let the other roots be α, β
So, we get,
αβ + β(0) + (0)α = `c/a`
αβ = `c/a`
Hence the product of other two roots is `c/a`
APPEARS IN
RELATED QUESTIONS
Prove relation between the zeros and the coefficient of the quadratic polynomial ax2 + bx + c
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/alpha-1/beta`
If α and β are the zeros of the quadratic polynomial f(x) = x2 − px + q, prove that `alpha^2/beta^2+beta^2/alpha^2=p^4/q^2-(4p^2)/q+2`
If α and β are the zeros of the quadratic polynomial f(x) = x2 − p (x + 1) — c, show that (α + 1)(β +1) = 1− c.
On dividing `3x^3 + x^2 + 2x + 5` is divided by a polynomial g(x), the quotient and remainder are (3x – 5) and (9x + 10) respectively. Find g(x).
If one of the zeroes of the quadratic polynomial (k – 1)x2 + k x + 1 is –3, then the value of k is ______.
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
5t2 + 12t + 7
Given that `sqrt(2)` is a zero of the cubic polynomial `6x^3 + sqrt(2)x^2 - 10x - 4sqrt(2)`, find its other two zeroes.
The only value of k for which the quadratic polynomial kx2 + x + k has equal zeros is `1/2`
If α, β are zeroes of the quadratic polynomial x2 – 5x + 6, form another quadratic polynomial whose zeroes are `1/α, 1/β`.