Advertisements
Advertisements
Question
If α and β are the zeroes of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/(aalpha+b)+1/(abeta+b)`.
Solution
Since α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c
α + β = `-"Coefficient of x"/"Coefficient of x"^2`
= `(-b)/a`
ab = `"Constant term"/"Coefficient of x"^2`
= `c/a`
We have, `1/(aalpha + b) + 1/(abeta + b)`
`1/(aalpha + b) + 1/(abeta + b) = (abeta + b + aalpha + b)/((aalpha + b)(abeta + b))`
`1/(aalpha + b) + 1/(abeta + b) = (a(alpha + beta) + 2b)/(a^2 xx alphabeta + ab beta + ab alpha + b^2)`
`1/(aalpha + b) + 1/(abeta + b) = (a(alpha + beta) + 2b)/(a^2 alpha beta + ab(alpha + beta)+ b^2)`
By substituting `a + beta = (-b)/a and alphabeta = c/a "we get",`
`1/(aalpha + b) + 1/(abeta + b) = (a xx(-b)/a + 2b)/(a^2 xx c/a + ab xx (-b)/a + b^2)`
`1/(aalpha + b) + 1/(abeta + b) = (cancela xx (-b)/cancela + 2b)/(a^(cancel2^1)xx c/cancela + cancelab xx (-b)/cancela + b^2)`
`1/(aalpha + b) + 1/(abeta + b) = (-b + 2b)/(a xx c - b^2 + b^2)`
`1/(aalpha + b) + 1/(abeta + b) = b/(ac - cancel(b^2) + cancel(b^2))`
`1/(aalpha + b) + 1/(abeta + b) = b/(ac)`
Hence, the value of `1/(aalpha+b)+1/(abeta+b) "is" b/(ac)`.
APPEARS IN
RELATED QUESTIONS
Find a quadratic polynomial with the given numbers as the sum and product of its zeroes respectively.
`-1/4 ,1/4`
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate :
`a(α^2/β+β^2/α)+b(α/β+β/α)`
If α and β are the zeros of the quadratic polynomial f(x) = x2 − p (x + 1) — c, show that (α + 1)(β +1) = 1− c.
Find the zeroes of the polynomial f(x) = `2sqrt3x^2-5x+sqrt3` and verify the relation between its zeroes and coefficients.
If f(x) = `x^4– 5x + 6" is divided by g(x) "= 2 – x2`
A quadratic polynomial, the sum of whose zeroes is 0 and one zero is 3, is
If two zeroes of the polynomial x3 + x2 − 9x − 9 are 3 and −3, then its third zero is
Basketball and soccer are played with a spherical ball. Even though an athlete dribbles the ball in both sports, a basketball player uses his hands and a soccer player uses his feet. Usually, soccer is played outdoors on a large field and basketball is played indoor on a court made out of wood. The projectile (path traced) of soccer ball and basketball are in the form of parabola representing quadratic polynomial.
What will be the expression of the polynomial?
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`v^2 + 4sqrt(3)v - 15`
The zeroes of the polynomial p(x) = 25x2 – 49 are ______.