Advertisements
Advertisements
Question
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate :
`a(α^2/β+β^2/α)+b(α/β+β/α)`
Solution
Since, α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c.
f(x) = ax2 + bx + c
∴ α + β = `(-"Coefficient of x")/("Coefficient of x"^2) = (- b/a)`
∴ αβ = `("Constant term")/("Coefficient of x"^2) = c/a`
We have,
`a(α^2/β+β^2/α)+b(α/β+β/α)`
= `a((α^3+β^3)/(αβ))+b((α^2+β^2)/(αβ))`
`= a(((α + β)^2 - 3αβ(α + β))/(αβ)) + (((α + β)^2 - 2αβ)/(αβ)) ...{(a^3 + b^3 = (a + b)^3 - 3ab(a + b)),(a^2 + b^2 = (a + b)^2 - 2ab):}`
By substituting α + β = `(-b)/a` and αβ = `c/a`, we get ,
= `a[((- b/a)^3 - 3c/a(-b/a))/(c/a)] + b[((-b/a)^2 - 2c/a)/(c/a)]`
= `a[(-b^3/a^3 + (3bc)/a^2)/(c/a)] + b[(b^2/a^2 - (2c)/a)/(c/a)]`
= `a[((-b^3 + 3abc)/a^3)/(c/a)] + b[((b^2 - 2ac)/(a^2))/(c/a)]`
= `a[(-b^3 + 3abc)/a^3 × a/c] + b[(b^2 - 2ac)/a^2 × a/c]`
= `a[(-b^3 + 3abc)/(a × a × cancel(a)) × cancel(a)/c] + b[(b^2 - 2ac)/(a × cancel(a)) × cancel(a)/c]`
= `a[(-b^3 + 3abc)/(a × a × c)] + b[(b^2 - 2ac)/(ac)]`
= `(cancela(-b^3 + 3abc))/(cancela × a × c) + (b(b^2 - 2ac))/(a × c)`
= `(-b^3 + 3abc)/(ac) + (b^3 - 2abc)/(ac)`
= `(cancel(-b^3) + 3abc + cancel(b^3) - 2abc)/(ac)`
= `(cancelabcancelc)/(cancelacancelc)`
= b
`a(α^2/β+β^2/α)+b(α/β+β/α) = b`
APPEARS IN
RELATED QUESTIONS
Find the zeros of the quadratic polynomial 6x2 - 13x + 6 and verify the relation between the zero and its coefficients.
Find the zeros of the quadratic polynomial 4x2 - 9 and verify the relation between the zeros and its coffiecents.
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients:
x2 – 2x – 8
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `beta/(aalpha+b)+alpha/(abeta+b)`
If α and β are the zeros of the quadratic polynomial f(x) = x2 − px + q, prove that `alpha^2/beta^2+beta^2/alpha^2=p^4/q^2-(4p^2)/q+2`
If α and β are the zeros of the quadratic polynomial f(x) = x2 − 1, find a quadratic polynomial whose zeroes are `(2alpha)/beta" and "(2beta)/alpha`
Find the quadratic polynomial, sum of whose zeroes is 0 and their product is -1. Hence, find the zeroes of the polynomial.
Zeroes of a polynomial can be determined graphically. No. of zeroes of a polynomial is equal to no. of points where the graph of polynomial ______.
If the zeroes of a quadratic polynomial ax2 + bx + c are both positive, then a, b and c all have the same sign.
For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.
`(-8)/3, 4/3`