English

If α And β Are the Zeros of a Quadratic Polynomial Such that a + β = 24 and a − β = 8, Find a Quadratic Polynomial Having α And β as Its Zeros. - Mathematics

Advertisements
Advertisements

Question

If α and β are the zeros of a quadratic polynomial such that α + β = 24 and α − β = 8, find a quadratic polynomial having α and β as its zeros.

Solution

Given

α + β = 24         ..............(i)

α − β = 8           ..............(ii)

By subtracting equation (ii) from (i) we get

α + β = 24

α − β = 8

--------------

2α = 32

`alpha=32/2`

α = 16

Substituting α = 16 in equation (i) we get,

α + β = 24

16 + β = 24

β = 24 - 16

β = 8

Let S and P denote respectively the sum and product of zeros of the required polynomial. then,

S = α + β

= 16 + 8

= 24

P = αβ

= 16 x 8

= 128

Hence, the required polynomial if f(x) is given by

f(x) = k(x2 - Sx + P)

f(x) = k(x2 -24x + 128)

Hence, required equation is f(x) = k(x2 -24x + 128) where k is any non-zeros real number.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Polynomials - Exercise 2.1 [Page 35]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 2 Polynomials
Exercise 2.1 | Q 17 | Page 35

RELATED QUESTIONS

Find the zeros of the quadratic polynomial 6x2 - 13x + 6 and verify the relation between the zero and its coefficients.


Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients:

x2 – 2x – 8


Find a quadratic polynomial with the given numbers as the sum and product of its zeroes respectively. 

`-1/4 ,1/4`


If the zeroes of the polynomial x3 – 3x2 + x + 1 are a – b, a, a + b, find a and b


If α and β are the zeros of the quadratic polynomial f(x) = x2 − 1, find a quadratic polynomial whose zeroes are `(2alpha)/beta" and "(2beta)/alpha`


Find the zeroes of the quadratic polynomial `(5y^2 + 10y)` and verify the relation between the zeroes and the coefficients. 


Find the quadratic polynomial whose zeroes are `2/3` and `-1/4` Verify the relation between the coefficients and the zeroes of the polynomial. 


Verify that 3, -2, 1 are the zeros of the cubic polynomial `p(x) = (x^3 – 2x2 – 5x + 6)` and verify the relation between it zeros and coefficients. 

 


If α, β, γ are the zeros of the polynomial f(x) = ax3 + bx2 cx + d, then α2 + β2 + γ2 =


Case Study -1

The figure given alongside shows the path of a diver, when she takes a jump from the diving board. Clearly it is a parabola.

Annie was standing on a diving board, 48 feet above the water level. She took a dive into the pool. Her height (in feet) above the water level at any time ‘t’ in seconds is given by the polynomial h(t) such that h(t) = -16t2 + 8t + k.

The zeroes of the polynomial r(t) = -12t2 + (k - 3)t + 48 are negative of each other. Then k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×