Advertisements
Advertisements
Question
Find the zeroes of the quadratic polynomial` (x^2 ˗ 5)` and verify the relation between the zeroes and the coefficients.
Solution
We have:
`f(x) = x^2 ˗ 5`
It can be written as ` x^2+ o x-5`
=`(x^2-(sqrt5)^2)`
=`(x+sqrt5) (x-sqrt5)`
∴` f(x)=0⇒ (x+sqrt5) (x-sqrt5)=0`
`⇒ x+sqrt5=0 or x-sqrt5=0`
`⇒x=-sqrt5 or x=sqrt5`
So, the zeroes of f(x) are `-sqrt5 and sqrt5`
Here, the coefficient of x is 0 and the coefficient of `x^2 `is 1.
Sum of zeroes=-`sqrt5+sqrt5=0/1=-(("Coefficient of x"))/(("Coefficient of "x^2))`
Product of zeroes`=-sqrt5xxsqrt5=(-5)/1= ("Constant term")/(("Coefficient of" x^2))`
APPEARS IN
RELATED QUESTIONS
Prove relation between the zeros and the coefficient of the quadratic polynomial ax2 + bx + c
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients:
t2 – 15
Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients
`p(x) = x^2 + 2sqrt2x + 6`
If α and β are the zeros of the quadratic polynomial p(y) = 5y2 − 7y + 1, find the value of `1/alpha+1/beta`
Find the condition that the zeros of the polynomial f(x) = x3 + 3px2 + 3qx + r may be in A.P.
If the zeros of the polynomial f(x) = x3 − 12x2 + 39x + k are in A.P., find the value of k.
Find a cubic polynomial whose zeroes are 2, -3and 4.
Find a cubic polynomial whose zeroes are `1/2, 1 and -3.`
Zeroes of a polynomial can be determined graphically. No. of zeroes of a polynomial is equal to no. of points where the graph of polynomial ______.
The zeroes of the polynomial p(x) = 25x2 – 49 are ______.